Matrix Tri-Factorization with Manifold Regularizations for Zero-shot Learning
Xing Xu, Fumin Shen, Yang Yang, Dongxiang Zhang, Heng Tao Shen and Jingkuan Song
Center For Future Media & School of Computer Science and Engineering
University of Electronic Science and Technology of China, China

Background
- **Zero-shot learning (ZSL)**
 - Two types of classes:
 - Seen: with labeled instances (for training only)
 - Unseen: without instances (for testing only)
 - Goal: Recognizing unseen object classes based on the knowledge learned from seen object classes during training.

Proposed Method
- **Matrix Tri-Factorization with Manifold Regularization (MFMR)**
 - Learning the projection from visual features of seen classes
 - $\mathbf{X} = \mathbf{U} \times \mathbf{A} \times \mathbf{V}^T + \mathbf{R}(\mathbf{U}) + \mathbf{R}(\mathbf{V})$
 - $\mathbf{X} \in \mathbb{R}^{n \times m}$ is the projection, each \mathbf{U} represents a visual feature cluster for each semantic embedding (e.g., attributes).
 - $\mathbf{A} \in \mathbb{R}^{m \times r}$ is the semantic embeddings (e.g., attributes).
 - $\mathbf{V} \in \mathbb{R}^{r \times s}$, each \mathbf{V} represents an instance cluster for each seen class.
 - **Predicting the categories of unseen classes instances**
 - Simple prediction scheme (MFMR):
 $\mathbf{y} = \text{arg min}_i (\mathbf{U}^T \mathbf{x})$, $y_i \in \{1, \ldots, L\}$
 - Joint prediction scheme (MFMR-joint):Exploiting the manifold structure in unseen classes instances

Experimental settings
- **Datasets**
 - AWA
 - CUB
 - SUN
 - CUB
 - SUN
 - SunHindi
 - Meta-objectives
 - BOW
 - HLP
 - INT

Results on "Conventional" Setting

<table>
<thead>
<tr>
<th>Method</th>
<th>AWA</th>
<th>CUB</th>
<th>SUN</th>
<th>SynC</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFMR</td>
<td>74.9</td>
<td>76.5</td>
<td>75.4</td>
<td>85.0</td>
<td>77.3</td>
</tr>
<tr>
<td>MFMR-joint</td>
<td>81.6</td>
<td>85.5</td>
<td>84.9</td>
<td>88.6</td>
<td>85.6</td>
</tr>
</tbody>
</table>

Results on "Generalized" Setting

<table>
<thead>
<tr>
<th>Method</th>
<th>AWA</th>
<th>CUB</th>
<th>SUN</th>
<th>SynC</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFMR</td>
<td>74.9</td>
<td>76.5</td>
<td>75.4</td>
<td>85.0</td>
<td>77.3</td>
</tr>
<tr>
<td>MFMR-joint</td>
<td>81.6</td>
<td>85.5</td>
<td>84.9</td>
<td>88.6</td>
<td>85.6</td>
</tr>
</tbody>
</table>

Experiments
- **Evaluation tasks and metrics**
 - Conventional & Generalized ZSL Tasks: zero-shot classification & retrieval
 - Metrics: Mean Absolute Precision (MAP)
- **Compared methods**
 - DAP [CVPR'09], ALE [CVPR'13], ESZSL [ICML'15], TMV-HLP [TPAMI'15], SSE [ICCV'15], JSLE [CVPR'16], SynC [CVPR'16]

Challenges in learning the projection
- The intrinsic manifold structure in the semantic embeddings of classes is not well explored.
- The projection shift problem exists due to the different distribution of seen and unseen classes.

Knowledge transfer to unseen classes
- Learning a projection from the visual feature space to the semantic embedding space based on seen classes, and apply it to unseen classes.

Details analysis
- The propose MFMR and MFMR-joint consistently perform the best on "generalized" setting.
- The propose MFMR and MFMR-joint predict more accurate results on "generalized" zero-shot classification task.