
Trajectory Simplification: An Experimental Study and
Quality Analysis

Dongxiang Zhang‡ Mengting Ding‡ Dingyu Yang§ Yi Liu‡ Ju Fan† Heng Tao Shen‡∗
‡ Center for Future Media and School of Computer Science &Engineering, UESTC, China

§School of Electronics and Information, Shanghai Dian Ji University, China
† the Key Lab of Data Engineering and Knowledge Engineering, Renmin University of China

‡{zhangdo,mengting,liuyi}@uestc.edu.cn §yangdy@sdju.edu.cn †fanj@ruc.edu.cn ‡shenhengtao@hotmail.com

ABSTRACT
The ubiquitousness of GPS sensors in smart-phones, vehicles
and wearable devices has enabled the collection of massive
volumes of trajectory data from tracing moving objects.
Consequently, an unprecedented scale of timestamped GPS
data has been generated and posed an urgent demand for
an effective storage mechanism for trajectory databases.
The mainstream compression technique is called trajectory
simplification, that finds a subsequence to approximate
the original trajectory and attempts to minimize the
information loss under a distance measure. Even though
various simplification algorithms have been proposed in
the past decades, there still lacks a thorough comparison
to cover all the state-of-the-art algorithms and evaluate
their quality using datasets in diversified motion patterns.
Hence, it still remains a challenge for GPS data collectors
to determine a proper algorithm in a concrete application.
In addition, almost the entire line of previous methods
uses error-based metrics to evaluate the compression quality,
while ignoring their usability in supporting spatio-temporal
queries on top of the reduced database. To bridge these
gaps, we conduct so far the most comprehensive evaluation
on trajectory simplification techniques. We compare the
performance of 25 algorithms in total using five real
datasets in different motion patterns. According to the
experimental findings, we present useful guidance for the
selection or development of effective trajectory simplification
algorithms.

PVLDB Reference Format:
Dongxiang Zhang, Mengting Ding, Dingyu Yang, Yi Liu, Ju Fan,
and Heng Tao Shen. Trajectory Simplification: An Experimental
Study and Quality Analysis. PVLDB, 11 (9): xxxx-yyyy, 2018.
DOI: https://doi.org/10.14778/3213880.3213885

1. INTRODUCTION
In recent years, the market has witnessed a sharp increase

in the number of smart-phones, vehicles and wearable

∗Corresponding Author: Heng Tao Shen

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 9
Copyright 2018 VLDB Endowment 2150-8097/18/05.
DOI: https://doi.org/10.14778/3213880.3213885

devices. With built-in GPS sensors, these devices have
enabled many companies to collect an unprecedented scale of
trajectory data by tracing the real-time positions of moving
objects. Fitbit, one of the most popular wearable devices
for fitness monitor and activity tracker, has collected the
latest location data from its 23.2 million active users1 at a
high sampling rate. As another example, the ride-hailing
giant Uber has hit 2 billion rides in June 20162, meaning
that billion-scale vehicle trajectories have been acquired and
call for an effective data management system for compressed
storage, query processing and pattern discovery.

In the face of these massive volumes of trajectory data,
an effective compression mechanism becomes a crucial
component in the storage layer for a trajectory database.
A straightforward idea is to exploit the redundancy in
the spatial and temporal attributes to provide loseless
compression. For instance, TrajStore [10] calculates the
difference between two successive points (xi−1, yi−1, ti−1)
and (xi, yi, ti) in each dimension and encodes the deltas
using fixed point arithmetic. Consequently, the majority
of points require a single byte for each delta. Trajic [36]
calculates the delta values in a different way from TrajStore.
It assumes the objects are moving with constant velocity
and linear direction, and encodes the difference between pi
and p′i, where p′i is the predicted location from the previous
point pi−1. However, these algorithms have limited effect
on storage reduction. As shown in Table 1, the compression
ratios of TrajStore and Trajic in the five GPS datasets used
in this paper are not encouraging.

Table 1: Compression ratios of lossless algorithms.
Taxi GeoLife Truck Illinois Indoor

TrajStore 1.63 1.81 1.71 1.55 1.52
Trajic 1.74 2.69 2.05 2.80 1.77

Trajectory simplification has been by now the mainstream
compression technique that provides much higher compres-
sion ratio with tolerable data loss. The idea is to discard
redundant or less important points such that the original
trajectory can be approximated by a series of successive line
segments constructed from the remaining points. Existing
algorithms fall into two categories based on the application
modes. In the batch mode [2, 11, 16, 30, 31, 32], we are

1http://expandedramblings.com/index.php/
fitbit-statistics/
2http://www.webpronews.com/
uber-hits-2-billion-rides-milestone-2016-07/

1

aware of the full historical data and aim at achieving a
good balance between compression ratio and data loss at
the server side. In the online mode [20, 26, 27, 32, 34, 35,
37, 39], only a local buffer is available at the sensor side and
the goal is to maintain the most important points for the
streaming GPS data. It is noticeable that an error bound ε
can be enforced in both modes to ensure that the error of
any discarded point does not exceed ε.

Semantic Compression [3, 21, 29, 38] is an alternative
solution that leverages the knowledge of road networks to
facilitate trajectory compression. The GPS points are first
mapped to a road segment by any existing map-matching
methods [17, 45]. The two dimensional locations (xi, yi)
are then transformed into road segment ids and offsets.
Since a local sequence of successive points can often be
mapped to the same segment, the spatial redundancy is
improved, which often leads to higher compression ratio. In
addition, frequent travel paths in the road network can also
be utilized to further reduce the storage cost. In this paper,
the experimental evaluations of the semantic compression
algorithms are beyond the scope for two main reasons. First,
these methods require additional road network information
which is not always available (e.g. in the indoor tracking
applications [1]). Second, these compression methods are
applied on top of the map-mapped points in the road
segments, rather than the points in the original trajectory.
It is possible that the moving objects are not confined to
the well-defined tracks, resulting in significant deviation
between the original data and the mapped data. Hence, it is
difficult to provide a fair comparison with other compression
methods functioned on the original trajectories.

In this paper, we aim at conducting a thorough evaluation
for the trajectory simplification technique which has been
recognized as the mainstream solution to large-scale trajec-
tory storage. Even though empirical studies on trajectory
compression have been conducted before by Muckell et
al. [33, 35] and Hunnik [41] in the master thesis, they only
cover a small number of algorithms. Since the compression
technology has witnessed significant advancement in recent
years, we believe there is a demand to conduct a new round
of more comprehensive experimental analysis to show the
recent progress.

Firstly, most of the algorithms evaluated in [33, 35] are
heuristic and no longer state-of-the-art. There have been a
considerable number of more advanced algorithms proposed
afterwards, with more complex distance metric [8, 5] and
processing logic [27, 28, 26]. There also emerges a new
brach of direction-preserving simplification algorithms [19,
20, 30, 31], which claimed to guarantee both direction and
position errors. In this paper, we will examine 25 trajectory
simplification algorithms in total, covering both batch and
online modes.

Secondly, even though various error-based metrics have
been proposed to measure the compression quality, the
usability of the reduced trajectory data still remains an
unresolved question. In this paper, we make a reasonable
assumption that in a trajectory database management
system, the compression algorithms are located in the
storage layer to support high-level query processing [13, 46]
or pattern mining tasks [14, 44, 12]. Hence, data usability
is also a key factor for compression quality measurement.
In this paper, we are the first to empirically study the
accuracies of supporting popular spatio-temporal queries on

top of a compressed trajectory database.
To sum up, we make the following primary contributions

in this paper:

1. We conduct so far the most comprehensive evaluation
on trajectory simplification, covering 25 algorithms in
total and 5 real datasets in different motion patterns.
The evaluation covers four types of error metrics,
including perpendicular Euclidean distance (PED),
synchronized Euclidean distance (SED), direction er-
ror and speed error.

2. We propose to use the data usability of reduced
trajectory database as an alternative performance
indicator for compression quality and conduct the first
experimental study on the accuracies of supporting
range queries, kNN queries, spatial joins and trajec-
tory clustering on top of simplified trajectories.

3. The codes are publicly accessible at Github3.

The remaining of the paper is organized as follows. We
present basic concepts and definitions about trajectory
simplification in Section 2. The simplification algorithms
in batch and online modes are presented and summarized
in Section 3. Comprehensive experimental evaluation and
analysis are conducted in Section 4. We conclude the paper,
summarize the key observations, present future directions in
Section 5.

2. PROBLEM DEFINITION

2.1 Basic Concepts of Trajectories
A trajectory T is a sequence of timestamped GPS data

p1, p2, . . . , pN . The i-th point in T , denoted by T [i], is
represented as a triple (xi, yi, ti), where (xi, yi) is a two-
dimensional location and ti records the sampling timestamp
of pi. We use T [ts : te] to denote the sub-trajectory
of T within time window [ts, te], which consists of points
pi with s ≤ i ≤ e. In contrast, a subsequence of T
is represented as pu1 , pu2 , . . . , puM , where pui ∈ T and
1 < u1 < . . . < uM < N . We use −−→pspe with 1 ≤ s < e ≤ N
to denote a directed segment staring from point ps and
ending at point pe. Without ambiguity, its direction is
formally defined as:

Definition 1. Direction of Segment −−→pspe
The direction of a segment −−→pspe, denoted by θ(−−→pspe), is
defined as the angle of an anticlockwise rotation from the
positive x-axis to a vector from ps to pe.

The problem of trajectory simplification essentially finds
a subsequence with M points (M << N) as the best
approximation of the original trajectory T . These M points
split the id space [1, N] intoM+1 intervals. We call−−−−−→puipui+1

the anchor segment for the points located within the id
interval (pui , pui+1). These points will be discarded, causing
data loss; and the distance to the associated anchor segment
is often used to measure compression error. In the following,
we summarize the error metrics that have been proposed.

3https://github.com/uestc-db/traj-compression

2

2.2 Error-Based Quality Metrics
We first present the definitions of three types of the most

popular error metrics adopted by previous methods. For
ease of presentation, we assume that pm is a point to be
discarded and −−→pspe is its anchor segment.

Definition 2. Perpendicular Euclidean Distance (PED)
The perpendicular Euclidean distance between pm and its
anchor segment −−→pspe is the shortest distance from pm to line
pspe formally defined as

PED(pm) =
|(ye − ys)xm − (xe − xs)ym + xeys − yexs|√

(ye − ys)2 + (xe − xs)2

Definition 3. Synchronized Euclidean Distance (SED)
The synchronized Euclidean distance between the actual
location pm and its synchronized point p′m(x′m, y

′
m, tm) on

the anchor segment −−→pspe is defined as:

SED(pm) =
√

(xm − x′m)2 + (ym − y′m)2

where

x′m = xs +
xe − xs
te − ts

(tm − ts)

y′m = ys +
ye − ys
te − ts

(tm − ts)

Definition 4. Direction-Aware Distance (DAD)
We denote the directions of −−−−−→pmpm+1 and −−→pspe as θ(−−→pspe) and
θ(−−−−−→pmpm+1) respectively. The angular distance of segement
−−→pspe, denoted by DAD(−−→pspe), is defined to be the greatest
angular difference between the two directions. That is,

DAD(−−→pspe) = maxs≤m<e 4 (θ(−−→pspe), θ(−−−−−→pmpm+1))

where

4(θ(−−→pspe), θ(−−−−−→pmpm+1)) = min{|θ(−−→pspe)− θ(−−−−−→pmpm+1)|,
2π − |θ(−−→pspe)− θ(−−−−−→pmpm+1)|}

Figure 1: Examples of error-based metrics.

Example 1. Figure 1 illustrates examples of PED, SED
and DAD. In these examples, we assume that points p1 and
p3 are retained and p2 is discarded, i.e., −−→p1p3 is the anchor

segment for p2. Based on the definitions, PED(p2) is the
shortest distance from p2 to the segment whereas SED(p2)
assumes that the object is moving at constant speed from
p1 to p3 and p′2 is the synchronized point of p2 in segment
−−→p1p3. The angular distance DAD(−−→p1p3) is defined as the
angle between −−→p1p2 and −−→p1p3.

Besides the three popular metrics, there exist other types
of error metrics hand-crafted by previous methods. For
instance, Chen et al. proposed integral square synchronous
Euclidean distance (ISSD) [8] whose computation takes O(1)
time. A direction-based persistence (DBP) measure was
proposed in [18] to capture the tolerable variation between
local minima and maxima. In [25], position and velocity
are considered as trajectory features worth preserving and
velocity error is used to measure compression quality.

Given a selected error metric, an error-bounded sim-
plification algorithm guarantees that the maximum error
for the discarded points does not exceed the predefined
threshold ε.

2.3 Query-Based Quality Measures
Previous simplification methods treat trajectory compres-

sion and storage as an independent component. However,
in the bigger picture of a trajectory management system,
trajectories are normally stored and indexed to support
query processing or pattern mining. We observed that
almost the entire line of previous simplification algorithms
ignore the data usability of reduced trajectories when
supporting querying and mining tasks in the higher layers.
Thus, we propose to treat data usability as a key factor
for quality measurement. In this following, we define three
types of popular and representative spatio-temporal queries
in a trajectory database, including range queries, kNN
queries, spatial join and trajectory clustering, and use their
accuracies in the reduced database as the query-based
quality measures to be used in the experimental study.

Definition 5. Window Range Query (W-RQ) [4]
Given a query cube 〈qx1 , qx2 , qy1 , qy2 , qt1 , qt2〉, a W-RQ
query finds all the trajectories with at least one point pi =
(xi, yi, ti) such that qx1 ≤ xi ≤ qx2 , qy1 ≤ yi ≤ qy2 and
qt1 ≤ ti ≤ qt2 .

To define kNN query in a trajectory database, we
need to determine a proper distance measure between two
trajectories. In the related literature, there have been
several distance measures proposed, such as Dynamic Time
Warping (DTW) [22], Edit distance with Real Penalty
(ERP) [6], Longest Common Subsequences (LCSS) [42] and
Edit Distance on Real Sequence (EDR) [7]. Among them,
EDR has been well cited and widely adopted because it can
reduce the effect of outliers and has the ability to handle
local time shifting. In addition, it can assign penalties
to gaps between two matched sub-trajectories and provide
more accurate results. The formal definition of EDR is

3

provided in the following:

EDRR,S(i, j) =

0, i = j = 0

i, j = 0 and i > 0

j, i = 0 and j > 0

min

EDRR,S(i− 1, j) + 1

EDRR,S(i, j − 1) + 1

EDRR,S(i− 1, j − 1)

+[!match(Ri, Sj)]

else

where R and S are two trajectories and the function match

determines whether the distance of Ri and Sj is within the
threshold ε. In this paper, we use EDR as the distance
measure to define window-based kNN queries in a trajectory
database. We assume that the trajectories have been
synchronized and the missing data have been interpolated.

Definition 6. Window kNN Query (W-kNN) [15]
Given a query trajectory Tq within time window [ts, te] and
a trajectory database D, a W-kNN query returns a result set
R with k trajectories such that for any T ′ ∈ R and T ′′ ∈
D − R, we have EDR(T [ts : te], T ′[ts : te]) ≤ EDR(T [ts :
te], T ′′[ts : te]).

Finally, we define the spatial-join queries in a trajectory
database.

Definition 7. Window Trajectory Distance Join (W-
TDJ) [9]
Given a query trajectory Tq within time window [ts, te] and
a distance threshold δ, T ′ is a result for W-TDJ if for
ts ≤ i ≤ te, we have dist(Tq[i], T ′[i]) ≤ δ, where dist(·, ·)
represents Euclidean distance in this paper.

For the operator of trajectory clustering, we follow the
definition proposed in [24]. It uses a tailored distance metric
that takes into account perpendicular distance, parallel
distance and angle distance. Interested readers can refer
to [24] for more details.

3. SIMPLIFICATION ALGORITHMS
Trajectory simplification, in both online and batch mode,

has been intensively studied in the past years. The objective
is to reduce the original trajectory from N points to M
points with M << N , while still preserving the significant
positional or topological features. In the batch mode, the
complete history of collected trajectories are available at
the server side and a better trade-off between compression
ratio and quality can be achieved with higher computation
cost. In the online mode, we consider streaming applications
and only a local buffer is available at the sensor side. Its
goal is to maintain the most important points when buffer
size is limited, so that communication overhead can also be
reduced.

In the following, we categorize the algorithms into batch
and online modes and summarize their features in Tables 2
and 3, respectively. Some of these algorithms are ad-hoc
and some of them can guarantee that the compression ratio
or distance-based error is bounded. In particular, there are
several algorithms designed with optimality. They either
find a sequence with exactly M points that minimize the
compression error (called min-ε problem) or they guarantee
the error is at most ε with the objective of minimizing the
number of points retained (called min-# problem).

3.1 Trajectory Simplification in Batch Mode
Bellman [2] is considered as the first algorithm for

trajectory simplification. It uses dynamic programming
to find a subsequence with M points that generates the
minimum spatial distance error. The time complexity of
the exact algorithm is O(N3). After that, DP [11] was
proposed as an approximate simplification method with
error bound guarantee. Given a trajectory segment and an
error threshold ε, it finds the point p′ causing the greatest
perpendicular distance ds. If ds < ε, the approximation is
accepted and we only need to keep the two end points and
discard the remaining points within the segment. Otherwise,
we split T into two sub-trajectories based on the selected
point and recursively apply the process. The worst time
complexity of DP is O(N2). To improve the efficiency of
DP algorithm, DPhull [16] was proposed to take advantage
of the properties of convex hull and save the cost of
finding the point with the greatest perpendicular distance.
The algorithm returns the same set of points as DP
but reduces the complexity to O(N logN). TD-TR [32]
is also an extension of DP by exploiting the temporal
dimension. It uses the same algorithm framework as DP.
The only difference is that a new distance measure named
Synchronous Euclidean Distance (SED) was proposed to
replace the perpendicular distance used in DP when finding
the split point with the maximum distance.

The above methods attempt to preserve the positional
information of original trajectories. In [8], the proposed
MRPA algorithm uses a distance measure named integral
square synchronous Euclidean distance (ISSD) with O(1)
computation. In [30], Long et al. observed that the
simplified trajectories by position-preserving algorithms
may lose critical information for trajectory clustering or on-
line query processing. They proposed direction-preserving
trajectory simplification (DPTS) strategies that considered
angular distance measure and showed that DPTS not only
preserves direction information, but also preserves position
information. Based on the new distance measure, an
algorithm named SP was proposed to solve the min-#
problem with complexity O(C · N2), where C is a small
constant in many cases, and an approximate algorithm
Intersect with O(N) complexity and degraded quality. In
their subsequent work [31], they attempted to solve the min-
ε problem in the DPTS framework. Similarly, they proposed
an exact algorithm named Error-Search with complexity
O(N2 logN) and an approximate algorithm named Span-
Search with complexity O(N log2 N).

3.2 Trajectory Simplification in Online Mode
In the online mode, GPS data are continuously sampled

at the sensor side. These data are stored in a local
buffer and an online simplification algorithm decides which
points to drop. The remaining points will be sent to the
remote server for further processing and the communication
overhead can be reduced due to trajectory simplification.
Since the online algorithms do not have the knowledge of
the entire trajectory, they cannot achieve optimal results for
the min-# and min-ε problems. The most straightforward
solution is Uniform which samples at a fixed rate, i.e.
points p1, pλ+1, p2λ+1, . . . will be preserved. Despite the
simplicity, it can even achieve promising performance in
certain scenarios, as will be illustrated in the following
experimental study.

4

Table 2: Summary of Trajectory Simplification Algorithms in Batch-Mode (sorted by publication year).
Algorithms Time Cost Space Cost Size-Bounded Error-Bounded Error Criterion Optimality

Bellman [2] O(N3) O(N2) yes no PED min-ε
DP [11] O(N2) O(N) no yes PED no

DPhull [16] O(N logN) O(N) no yes PED no
TD-TR [32] O(N2) O(N) no yes SED no

MRPA [8] O(N
2

M
) O(N) yes no ISSD min-ε

SP [30] O(C ·N2) O(N) no yes DAD min-#
Intersect [30] O(N) O(N) no no DAD no

Error-Search [31] O(N2 logN) O(N2) yes no DAD min-ε
Span-Search [31] O(N log2 N) O(N) yes no DAD no

Table 3: Summary of Trajectory Simplification Algorithms in Online-Mode (sorted by publication year).
Algorithms Time Cost Space Cost Size-Bounded Error-Bounded Error Criterion
Uniform O(N) O(1) no no -
OPW [32] O(N2) O(N) no yes PED

OPW-TR [32] O(N2) O(N) no yes SED
Dead Reckoning [39] O(N) O(1) no yes prediction error

Threshold [37] O(N) O(1) no yes speed and direction
STTrace [37] O(N · log β) O(β) yes no SED
SQUISH [34] O(N · log β) O(β) yes no SED

CDR [23] O(N2) O(N) no yes PED

SQUISH-E(λ) [35] O(N log N
λ

) O(β) yes no SED
SQUISH-E(µ) [35] O(N logN) O(N) no yes SED

Persistence [18] O(N) O(1) no yes DBP
BQS [27, 28] O(N2) O(N) no yes PED

FBQS [27, 28] (N) O(1) no yes PED
Angular [20] O(N) O(1) no yes DAD
Interval [19] O(N) O(1) no yes DAD

DOTS [5] O(N
λ

) O(β2) yes no ISSD
OPERB [26] O(N) O(1) no yes PED

OPW [32] is a very early algorithm designed for online
simplification. As a new point arrives in the buffer, it
uses the new point and the first point to build an anchor
segment and calculates the PED distance for all the points
in the buffer. If the maximum distance is larger ε, the new
point is sampled; otherwise, the algorithm proceeds to the
next incoming point. Its variant based on SED distance
measure is named OPW-TR. The complexity of these two
algorithms in the worst case is O(N2).

Dead Reckoning [39] reduces the time complexity to
O(N) as it incurs O(1) cost in distance calculation for each
incoming point. The algorithm assumes that each object
is moving in a constant velocity and direction which can
be derived from the recent historical data. This study
calculates the Euclidean distance between each incoming
point and its predicted counterpart and uses the distance
to determine whether the new point should be preserved
or dropped. It was proved that the method has an error
bound when applied in the batch mode to simplify the
entire trajectory. CDR [23] is similar to Dead Reckoning
when applied in the moving object tracing applications.
It refines the preservation condition of a sampled point in
order to achieve a higher compression ratio and guarantee
the same error bound as Dead Reckoning. However, its
computation cost is O(N2) in the worst case.

Threshold [37] and Persistence [18] do not apply
Euclidean distance measure when deciding whether a point
should be preserved. Instead, Threshold [37] poses
two threshold constraints on both speed and direction
variation. Its compression ratio is not high because a
point is discarded only when both constraints are satisfied.
Persistence [18] introduces a new heuristic approach based
on topological persistence to maintain the sharp directional
features of trajectories. It produces compact high quality
approximations and runs in linear complexity.

When the local buffer is of fixed size (say β), a variant
named STTrace was proposed in [37] to guarantee that
at most β points will be preserved. If the buffer is full
when a new point arrives, the algorithm will pick the point
in the buffer with the minimum SED distance and evict
it. SQUISH [34] also works in the streaming environment
with a fixed-size buffer. For each point pm, it maintains
a priority π(pm) which serves as the upper bound of SED
distance for the neighboring points. This is because when
a point is deleted, its priority score will be accumulated
to its two neighboring point. Since SQUISH is not error-
bounded, its subsequent work SQUISH-E [35] was designed
to be adaptive to different objectives by introducing two
parameters λ (used as compression ratio bound) and µ (used
as compression error bound). When setting µ = 0, the

5

algorithm minimizes SED error ensuring the compression
ratio of λ. We denote the algorithm SQUISH-E(λ). When
λ = 1, the algorithm maximizes compression ratio while
keeping errors under µ, denoted by SQUISH-E(µ).

BQS [27, 28] picks at most eight significant points,
forming a convex hull to enclose all the points in the buffer.
Then, an upper bound and a lower bound are derived
such that in most cases, a point can be quickly decided
for removal or preservation with cost O(1). However, the
running time of BQS still remains O(N2) in the worst
case. FBQS [27, 28] is a fast version of BQS [27] that
avoids deviation calculation and eliminates the necessity of
maintaining a buffer. Consequently, the time complexity
is reduced to O(N) but more points will be preserved in
FBQS than in BQS. In [28], the amnesic framework of
BQS, named ABQS, is proposed to specifically handle aging
trajectories and its evaluation is beyond the scope of this
paper. In [26], Liu et al. proposed a one-pass error bounded
trajectory simplification algorithm named OPERB. It is
based on a local distance checking method and maintains a
directed line segment to approximate the buffered points and
the distance from the current point to the line segment must
be bounded. Five optimization techniques were proposed to
further improve the compression ratio. The time complexity
is O(N) and space cost is O(1).

The works of Angular [19] and Interval [20] belong
to another branch of online simplification that works in
the direction-preserving scenario. Angular maintains a
variable εa to accumulate the angular difference of the points
recently arrived. If εa is smaller than the threshold, it
preserves the latest point and resets εa. However, such
an upper bound estimation is too loose and an improved
version Interval was proposed to discard more points and
still guarantee the error bound. Both algorithms achieve
O(N) time complexity and O(1) space overhead.

DOTS [5] can be viewed as an online version of MRPA [8],
with the same type of distance measure. It constructs an
incremental DAG (directed acyclic graph) with multiple
layers for online points. The ISSED will be locally
minimized by adjusting edges between consecutive layers
and one of the shortest paths will be selected as the
simplified trajectory.

4. EXPERIMENTAL ANALYSIS
In this section, we evaluate the performance of 25

trajectory simplification algorithms with 5 real datasets in
different motion patterns. We implement in C/C++ the
algorithms of DP and TD-TR in the batch mode and Uni-
form, OPW, OPW-TR, Dead Reckoning, Threshold,
Persistence, STTrace, SQUISH-E(λ), SQUISH-E(µ)
and Persistence in the online mode. The source codes
of remaining algorithms are generously provided by the
authors. All the experiments are conducted on a server with
6TB disk space, 40 CPU cores (Intel Xeon CPU E5-2650
with 2.30GHz) and 256GB memory.

4.1 Datasets
Since the characteristics of a GPS traces could differ

substantially based on the transportation mode of moving
objects, we use 5 types of trajectory datasets to examine
whether an algorithm is robust to different motion patterns.
Statistics of these datasets are shown in Table 4.

• GeoLife4: The dataset essentially keeps all the travel
records of 182 users for a period of over three years, in-
cluding multiple kinds of transportation modes (walk-
ing, driving and taking public transportation). The
trajectories are sampled every 1 ∼ 5 seconds, with an
average speed of 5.73m/s between two neighbor points.

• Taxi [43]: The dataset tracks the trajectories of
15, 054 taxies in Singapore. For each taxi, the GPS
information are continually collected for one entire
month with the sampling rates from half a minute
to three minutes. Its average distance between two
neighbor points is much higher than that in GeoLife.

• Indoor5: The dataset contains trajectories of visitors
in the ATC shopping center in Osaka. To better
capture the indoor activities, its maximum filter
update rate is fixed to 30Hz and the visitor locations
are sampled every 0.03 ∼ 0.06 second.

• Truck6 [26]: The dataset is the GPS trajectories
collected by trucks equipped with GPS sensors in
China during a period from Aug. 2015 to Oct. 2015.
The sampling rate varied from 3s to 60s. It’s average
speed is comparable to that in Taxi, but with a smaller
average distance. The reason is that the trucks have
higher speed when moving on highways, but they may
rest at the same location for a long time.

• Illinois7: The dataset is obtained from two members
in Argonne National Laboratory of UIC during their
daily commute for 6 months. Each trajectory repre-
sents a continuous trip of a member in the Cook county
and/or the Dupage county of Illinois. The trajectories
are sampled strictly every second. The dataset has the
lowest average distance, i.e., the highest redundancy.

Table 4: Statistics of datasets.

Number of Number of Sampling Average Average
trajectories points rate speed distance

GeoLife 36,479 24,178,070 1s∼5s 5.73m/s 9.96m
Taxi 574,329 350,811,106 21s∼193s 4.86m/s 280.04m

Indoor 529,397 330,117,253 0.03s∼0.06s 0.79m/s 0.037m
Truck 10,110 10,059,685 3s∼60s 4.32m/s 82.74m
Illinois 459 355,968 1s 0.008m/s 0.008m

4.2 Compression Time Analysis
Table 5 shows the average CPU time to process a

trajectory point in the batch and online modes. DPhull
is an improved version of DP and runs much faster than
DP. The performance of TD-TR is close to DP because they
share the same processing logic but with different distance
metrics. MRPA is much slower than TD-TR as its
accumulative distance measure requires higher computation
cost. In the direction-aware batch approaches, Error-
Search requires O(N2 logN) complexity and incurs the

4http://research.microsoft.com/en-us/projects/
geolife/
5http://www.irc.atr.jp/crest2010_HRI/ATC_dataset/
6http://mashuai.buaa.edu.cn/traj.html
7https://www.cs.uic.edu/~boxu/mp2p/gps_data.html

6

Table 5: Compression time per trajectory point (in
µs) for all the algorithms.

Algorithms Lang Taxi Truck GeoLife Indoor Illinois

Batch Methods

DP [11] C/C++ 0.53 0.46 0.46 0.52 0.58

DPhull [16] C/C++ 0.15 0.15 0.16 0.19 0.19

TD-TR [32] C/C++ 0.50 0.45 0.50 0.65 0.62

MRPA [8] Matlab 18.57 24.29 19.49 20.06 21.29

SP [30] C/C++ 5.69 15.67 15.00 19.23 14.10

Intersect [30] C/C++ 0.28 0.28 0.28 0.30 0.25

Error-Search [31] C/C++ 664.29 945.02 652.65 651.99 574.22

Span-Search [31] C/C++ 28.29 35.07 32.27 28.42 31.74

Online Methods

Uniform C/C++ 0.012 0.009 0.012 0.011 0.011

OPW [32] C/C++ 1.46 5.02 1.66 0.81 1.62

OPW-TR [32] C/C++ 1.72 6.89 1.42 0.87 1.14

DR [39] C/C++ 0.32 0.25 0.29 0.32 0.33

Threshold [37] C/C++ 1.16 1.04 1.07 0.60 0.45

STTrace [37] C/C++ 4.63 6.41 5.47 5.37 5.71

SQUISH [34] C/C++ 4.44 5.95 5.08 5.13 5.36

CDR [23] C/C++ 1.75 4.54 1.84 4.05 1.68

SQUISH-E(λ) [35] C/C++ 2.55 3.09 3.03 2.91 3.06

SQUISH-E(µ) [35] C/C++ 22.35 29.59 26.78 26.79 19.44

Persistence [18] C/C++ 0.54 0.50 0.49 0.65 0.47

BQS [27, 28] Python 486.93 500.91 739.49 596.73 1012.98

FBQS [27, 28] Python 357.90 405.38 451.08 411.60 610.13

Angular [20] Java 0.21 0.20 0.22 0.23 0.25

Interval [19] Java 0.31 0.28 0.29 0.31 0.41

DOTS [5] C/C++ 1.61 2.67 1.58 1.86 1.04

OPERB [26] Java 0.84 0.97 0.90 0.94 1.61

highest running time. In the online methods, the results of
Uniform can be seen the lower bound of processing time as
it involves only the simplest processing logic. SQUISH-
E(λ) requires much more processing time than the two
other variants because after compression by SQUISH,
it iteratively picks the point with the minimum priority,
removes it if the compression ratio can still be guaranteed,
and adjusts the items in the priority queue. The running
time of BQS and FBQS are much higher than the other
methods for two main reasons. First, they involve several
complex operators such as determining the quadrant and
estimating the lower and upper bounds. Second, these two
algorithms provided by the authors were implemented in
Python. FBQS is slightly faster than BQS as it avoids the
deviation operator which is O(N) in the worst case.

4.3 Compression Error Analysis
To evaluate the quality of batch algorithms, we fix their

compression ratio as 10 and examine their compression
errors under different types of distance measures. The
results of PED, SED, DAD and Speed errors are reported
in Table 6. Among these algorithms, the best four in each
column are marked in bold for the visualization purpose so
that readers can quickly identify the promising algorithms
among various datasets and error metrics.

The most important finding is that each algorithm
is designed for a particular distance measure and its
objective function is to minimize the error on that metric.
Therefore, these algorithms show biased performance on
different error metrics. A typical example is the direction-
aware compression family (including SP, Intersect, Error-
Search and Span-Search). They perform remarkably well
in the metric of DAD, but cannot well preserve the location
and speed information. Another example is TD-TR, which
is a simple extension of DP algorithm by applying SED
metric when choosing the split point. We can see that it
is significantly superior over DP in the SED columns but
shows worse performance when the metric is PED. Other
observations that are worth noting are summarized in the
following. 1) The datasets of Indoor and Illinois are sampled

at a high frequency and the compression errors are much
smaller in these two datasets with high redundancy. 2)
The simplified trajectories by DP and DPhull are identical
and thus they obtain the same compression errors in the
table. Moreover, these two algorithms yield the smallest
PED errors in all the datasets since they are particularly
designed for this metric. 3) MRPA and TD-TR are
two algorithms designed for synchronized distance errors.
The former algorithm uses bottom-up merge strategy while
the latter one applies iterative top-down split. These two
algorithms work particularly well in the SED metric.

For the online methods, we also fix the compression ratio
as 10 and report the results of four types of errors in Table 7.
For better presentation, we mark the best five results in
each column in bold. We observe that 1) Again, most
of the algorithms exhibit biased performance on different
error metrics as they are optimized for a particular distance
measure. Angular and Interval are designed for DAD and
only work well in this distance error. OPW-TR is a variant
of OPW by replacing PED metric with SED. Thus, it is
superior in the SED metric but works worse than OPW in
the PED metric. 2) DOTS outperforms the other methods
in the metrics of PED, SED and Speed. It uses ISSD as
the distance metric and can be seen as an online version
of MRPA. The superiority of DOTS and MRPA implies
that an appropriate and robust distance measure can play
a key role for compression quality. The ISSD cumulates
the SED errors of a local segment. Even though higher
calculation cost is required, it helps reduce the errors under
multiple metrics. 3) Threshold poses two constraints on
both speed and direction. After adjusting the thresholds to
obtain the required compression ratio, many key information
has been lost. Thus, its performance is rather unsatisfactory.
4) Persistence is also a heuristic that focuses on preserving
the sharp features in the shape. It does not work well for
PED, SED and Speed. 5) STTrace and the SQUISH
family share similar processing logic, by evoking the one with
the minimum SED error or the smallest priority score when
a new point arrives. These algorithms obtain comparable
errors in the four metrics. Overall, SQUISH-E(µ) is the
best among them because its objective is to minimize the
number of simplified points in the meanwhile keeping the
error below the threshold. With the same compression ratio,
it allows a smaller error threshold. 6) When considering SED
metric in the Truck dataset, the algorithms design for metric
other than SED tend to have SED errors higher than 1000.
The reason is that in the Truck dataset, the trucks could
stay at the same location for a long period. The methods
without using SED in the optimization function are likely
to preserve the first point. The remaining redundant points
at the same location do not incur PED error but generate a
considerable amount of SED error.

4.4 Compression Errors w.r.t Varying Ratios
In this set of experiments, we evaluate the compression

errors w.r.t. varying size of simplified trajectory database.
We use Taxi and GeoLife as two representative datasets
and report the results of batch algorithms in Figure 2 and
online algorithms in Figure 3. For each simplification mode,
we selectively plot the algorithms whose errors are marked
bold in Tables 6 and 7. The algorithms demonstrate similar
patterns in the Taxi and GeoLife datasets, i.e., an algorithm
works best in Taxi is likely to outperform others in the

7

Table 6: Error results for batch algorithms with the same compression ratio (ratio = 10).
PED Errors SED Errors

Taxi Truck GeoLife Indoor Illinois Taxi Truck GeoLife Indoor Illinois

DPhull [16] 218.36 29.50 1.64 0.015 0.00050 1015.61 1162.12 20.26 0.041 0.077
TD-TR [32] 264.86 40.36 2.40 0.019 0.00071 478.12 79.16 4.53 0.031 0.0015
MRPA [8] 218.64 30.31 2.02 0.016 0.00059 379.97 56.20 3.79 0.027 0.0012
SP [30] 794.30 1761.54 216.13 0.20 0.015 1420.57 3019.28 360.13 0.25 0.039

Intersect [30] 619.77 1531.02 186.17 0.16 0.0098 1279.02 2792.14 668.74 0.20 0.083
Error-Search [31] 803.06 1191.48 33.73 0.061 0.0045 1404.22 2221.03 80.88 0.091 0.015
Span-Search [31] 659.04 940.32 42.47 0.049 0.014 1362.84 2173.16 121.77 0.079 0.048

Direction Errors Moving Speed Errors
Taxi Truck GeoLife Indoor Illinois Taxi Truck GeoLife Indoor Illinois

DPhull [16] 3.04 2.93 2.46 2.82 2.68 5.09 74.27 1.67 0.33 0.010
TD-TR [32] 3.05 2.89 2.49 2.78 2.60 3.35 2.36 0.63 0.29 0.00043
MRPA [8] 3.10 2.90 2.64 2.88 2.68 3.41 3.82 0.65 0.30 0.00044
SP [30] 2.22 1.99 0.97 1.77 0.35 5.86 86.60 3.45 0.36 0.0013

Intersect [30] 3.03 2.99 1.26 2.46 0.38 5.95 93.99 5.10 0.35 0.011
Error-Search [31] 2.17 1.86 0.94 1.51 0.31 5.81 85.21 10.65 0.37 0.0010
Span-Search [31] 3.05 2.84 2.18 1.99 1.19 5.87 94.88 12.03 0.36 0.0052

Table 7: Error results for online algorithms with the same compression ratio (ratio = 10).
PED Errors SED Errors

Taxi Truck GeoLife Indoor Illinois Taxi Truck GeoLife Indoor Illinois

Uniform 345.97 159.81 8.45 0.023 0.0012 760.57 410.69 30.87 0.041 0.024
OPW [32] 288.61 50.16 2.55 0.018 0.00080 1134.05 1245.25 26.26 0.042 0.16

OPW-TR [32] 289.27 79.31 3.55 0.022 0.00095 554.41 164.72 7.19 0.037 0.0022
Dead Reckoning [39] 392.22 115.88 3.89 0.021 0.00079 1001.48 1040.67 19.82 0.042 0.0057

Threshold [37] 1040.73 680.79 286.08 0.36 0.057 2344.61 2033.78 652.98 0.45 0.15
STTrace [37] 402.15 124.91 8.83 0.038 0.0015 786.94 408.58 28.07 0.061 0.0035
SQUISH [34] 353.76 144.42 10.26 0.025 0.00098 784.45 426.29 28.64 0.044 0.0025
CDR [23] 387.22 64.74 5.06 0.11 0.0019 896.33 166.19 11.07 0.18 0.0055

SQUISH-E(λ) [35] 332.58 113.99 7.35 0.023 0.0011 676.59 370.55 22.83 0.040 0.0023
SQUISH-E(µ) [35] 283.06 38.29 2.55 0.020 0.00077 530.11 81.40 5.01 0.033 0.0017
Persistence [18] 326.53 69.43 103.71 0.029 0.022 1154.11 1334.62 164.06 0.060 0.093
BQS [27, 28] 274.75 38.23 2.29 0.020 0.00068 1015.60 1159.56 21.15 0.045 0.032
FBQS [27, 28] 260.06 36.63 2.17 0.017 0.00057 959.92 1147.70 14.21 0.040 0.013
Angular [20] 882.79 1532.65 284.47 0.19 0.016 1831.90 3219.05 804.26 0.25 0.042
Interval [19] 1240.72 1889.81 274.29 0.32 0.015 2489.10 5090.83 450.04 0.39 0.039
DOTS [5] 228.91 32.95 2.18 0.016 0.00056 366.52 60.72 4.10 0.027 0.0011

OPERB [26] 326.92 306.20 2.73 0.019 0.00068 1179.36 1577.67 21.01 0.042 0.085

Direction Errors Moving Speed Errors
Taxi Truck GeoLife Indoor Illinois Taxi Truck GeoLife Indoor Illinois

Uniform 3.06 3.01 2.75 2.88 2.82 5.53 95.65 12.00 0.38 0.010
OPW [32] 3.06 2.93 2.58 2.83 2.78 5.02 60.61 2.08 0.34 0.012

OPW-TR [32] 3.05 2.91 2.59 2.80 2.75 3.62 4.89 0.76 0.31 0.00055
Dead Reckoning [39] 3.06 2.99 2.69 2.87 2.83 5.08 78.07 6.46 0.37 0.00091

Threshold [37] 3.06 2.92 2.80 2.86 2.74 5.77 44.68 3.85 0.39 0.010
STTrace [37] 3.06 2.92 2.58 2.76 2.63 3.58 27.96 9.61 0.29 0.00051
SQUISH [34] 3.06 2.92 2.66 2.86 2.72 4.32 39.76 11.26 0.36 0.00062
CDR [23] 3.06 2.91 2.66 2.88 2.81 4.21 4.80 0.95 0.41 0.00081

SQUISH-E(λ) [35] 3.06 2.94 2.65 2.82 2.72 4.29 51.40 11.02 0.35 0.00060
SQUISH-E(µ) [35] 3.05 2.90 2.55 2.79 2.65 3.42 4.05 0.69 0.30 0.00046
Persistence [18] 3.03 2.98 2.69 2.78 2.69 5.38 112.33 17.35 0.40 0.010
BQS [27, 28] 3.06 2.91 2.47 2.86 2.75 4.91 75.14 1.97 0.36 0.0044
FBQS [27, 28] 3.06 2.91 2.50 2.85 2.75 4.87 75.41 1.90 0.36 0.0026
Angular [20] 3.05 3.00 2.30 2.72 0.58 6.01 80.38 5.37 0.36 0.0013
Interval [19] 3.06 3.04 1.32 2.31 0.39 6.10 88.40 3.68 0.36 0.0013
DOTS [5] 3.05 2.90 2.60 2.83 2.70 3.52 3.95 0.70 0.32 0.00046

OPERB [26] 3.08 2.99 2.47 2.82 2.71 5.30 83.76 2.85 0.35 0.011

GeoLife dataset.
In the batch mode, when PED is used, the compression

error of MPRA gets close to that of DP as the compression

ratio ascends. When the ratio reaches 27, its performance
can be even slightly better than DP. This implies that
MPRA is more suitable for a trajectory database to be

8

5 9 11 16 18 21 25 28 31
Ratio

0

200

400

600

800

1000

1200

1400

P
E
D
E
rr
o
r

DPhull

Intersect

MRPA

TD-TR

(a) Taxi (PED Error)

4 7 11 16 20 22 26 31
Ratio

0

20

40

60

80

100

120

140

P
E
D
E
rr
o
r

DPhull

Error-Search

MRPA

TD-TR

(b) GeoLife (PED Error)

5 9 11 16 18 21 25 28 31 44
Ratio

0

500

1000

1500

2000

2500

3000

3500

4000

S
E
D
E
rr
o
r

DPhull

Intersect

MRPA

TD-TR

(c) Taxi (SED Error)

4 7 10 15 19 21 25 27 32
Ratio

0

50

100

150

200

250
S
E
D
E
rr
o
r

DPhull

Error-Search

MRPA

TD-TR

(d) GeoLife (SED Error)

5 9 12 16 18 21 25 27 33
Ratio

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

D
ir
e
ct
io
n
E
rr
o
r

DPhull

Error-Search

Intersect

SP

(e) Taxi (DAD Error)

5 10 15 20 23 27 32
Ratio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ir
e
ct
io
n
E
rr
o
r

Error-Search

Intersect

SP

Span-Search

(f) GeoLife (DAD Error)

5 10 12 18 21 25 28 31
Ratio

2

3

4

5

6

7

S
p
e
e
d
E
rr
o
r

DPhull

Error-Search

MRPA

TD-TR

(g) Taxi (Speed Error)

4 7 10 15 19 22 25 28 32
Ratio

0

2

4

6

8

10

12

S
p
e
e
d
E
rr
o
r

DPhull

MRPA

SP

TD-TR

(h) GeoLife (Speed Error)

Figure 2: Error-ratio variation in the batch mode.

fiercely compressed. In addition, MPRA also outperforms
the other methods in the metrics of SED and Speed,
inferring that it is a robust solution in multiple error metrics.
DP, though working good in PED, scales poorly in SED.
Its SED errors increase dramatically as the compression
ratio grows. Error-Search achieves the best performance
in the direction metric because it guarantees the minimum
compression error under a fixed compression ratio. MRPA
and TD-TR perform significantly better than DP in
the Speed metric as they take into account the temporal
attribute.

In the online mode, DOTS has a clear advantage in
the metrics of PED and SED. It also demonstrates good
scalability w.r.t. compression ratio. We can see that as ratio
increases, the performance gap is widened. In the direction-
based error metric, Interval is dominating other methods
with much smaller errors. However, it shows poor scalability

4 6 10 14 19 21 24 28 33 38
Ratio

0

200

400

600

800

1000

1200

1400

P
E
D
E
rr
o
r

BQS

DOTS

FBQS

OPW

SQUISH-E(µ)

(a) Taxi (PED Error)

5 9 12 15 17 20 22 24 28 31
Ratio

0

2

4

6

8

10

12

P
E
D
E
rr
o
r

BQS

DOTS

FBQS

OPW

SQUISH-E(µ)

(b) GeoLife (PED Error)

2 9 11 15 19 21 26 28 34
Ratio

0

500

1000

1500

2000

2500

3000

3500

S
E
D
E
rr
o
r

DOTS

OPW-TR

SQUISH

SQUISH-E(λ)

SQUISH-E(µ)

(c) Taxi (SED Error)

5 11 13 15 19 21 23 26 30 34
Ratio

0

10

20

30

40

50

60

S
E
D
E
rr
o
r

CDR

DOTS

FBQS

OPW-TR

SQUISH-E(µ)

(d) GeoLife (SED Error)

5 9 11 19 21 25 27 29 38
Ratio

2.92

2.94

2.96

2.98

3.00

3.02

3.04

3.06

D
ir

e
ct

io
n

E
rr

o
r

Angular

DOTS

OPW-TR

Persistence

SQUISH-E(µ)

(e) Taxi (DAD Error)

3 7 10 13 15 17 20 23 25 28 30 32
Ratio

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ir
e
ct
io
n
E
rr
o
r

Angular

BQS

Interval

OPERB

OPW-TR

SQUISH-E(µ)

(f) GeoLife (DAD Error)

5 10 15 19 21 25 27 31 38
Ratio

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

S
p
e
e
d
E
rr
o
r

CDR

DOTS

OPW-TR

SQUISH-E(µ)

STTrace

(g) Taxi (Speed Error)

5 11 13 15 19 21 23 26 30 34
Ratio

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

S
p
e
e
d
E
rr
o
r

CDR

DOTS

FBQS

OPW-TR

SQUISH-E(µ)

(h) GeoLife (Speed Error)

Figure 3: Error-ratio variation in the online mode.

w.r.t. compression ratio and its errors increase sharply as
the ratio grows. As to the Speed metric, SQUISH-E(µ)
and OPW-TR achieve comparable performance to DOTS
and they also scale well with compression ratio.

4.5 Database Usability

4.5.1 Evaluation Metric
Given a W-RQ query, let Rg denote the result returned

by the original trajectory database and Rc denote the
trajectories returned by the compressed database. The
precision of W-RQ is defined as

prec(W-RQ) =
|Rc ∩Rg|
|Rc|

(1)

9

The recall of W-RQ is defined as

recall(W-RQ) =
|Rc ∩Rg|
|Rg|

(2)

The accuracy of supporting W-RQ is defined as the F1-
measure by incorporating prec(W-RQ) and recall(W-RQ).
The accuracy of W-TDJ is defined the same way as W -RQ
because |Rc| is not necessarily equal to |Rg|. For W-kNNQ
query, we define the accuracy as

accu(W-kNNQ) =
|Rc ∩Rg|

k
(3)

To define the accuracy of trajectory clustering, we assume
that the trajectories in the original and simplified datasets
are both partitioned into m clusters via the clustering
method proposed in [24]. Let CO denote the clustering
results derived from the original trajectory database. Given
a pair of trajectories T〉 and T|, if they appear in the same
cluster, we consider (T〉, T|) ∈ CO. Similarly, we can define
the clustering results of CS for the simplified trajectories.
Then, we can formally determine the precision and recall of
trajectory clustering and use them to define the F1-measure:

prec(clustering) =
|CO ∩ CS |
|CS |

(4)

recall(clustering) =
|CO ∩ CS |
|CO|

(5)

4.5.2 Experimental Setting
In the default settings, we use a square with radius set

to 2km to specify the spatial constraint. The number of k
in kNN query is set to 25. In the join query, the window
length is 25 minutes and the distance threshold is 2km. To
measure the accuracy of trajectory clustering, we run the
TRACLUS algorithm [24] with the code provided by the
authors. For fair comparison, we tune the parameters to
uniformly generate 80 clusters for every dataset. We do
not use Indoor dataset in the following experiments because
its average time span of trajectory is a few seconds and
not adequate to test the W-TDJ query. We also neglect
the Illinois dataset because it is highly redundant. There
is little differentiation for the query metrics among the
simplification methods as their accuracies are always close to
1. With the simplified datasets by the compression methods,
we conduct a linear interpolation to align the GPS points
at each timestamp. After that, we compare the accuracy
of query processing in the original dataset and simplified
dataset with missing points interpolated.

4.5.3 Experimental Evaluation
The F-measure results of W-RQ are reported in Table 8.

The dataset of Illinois is sampled at a very high rate and
its GPS points are highly redundant. Thus, with the same
compression ratio as the other datasets, it still preserves
all the key information. For all three types of query
operators, its accuracy among all algorithms is equal to 1.
Similarly, the GeoLife dataset is more redundant than Taxi
and Truck. The accuracies for most of the algorithms can
also reach 100% in this dataset. In the following, we conduct
the performance analysis and summarize the observations
mainly using the results in Taxi and Truck datasets.

In the batch mode, the direction-aware methods work
poorly and their simplified trajectories cannot well support

popular queries in spatial-temporal database. Its F-measure
in range query processing even drops to around 50% in
the Truck dataset. This is because they put direction
as the first-class citizen and miss plenty of key position
and temporal information. The DP family (including
DP, DPhull and TD-TR) shows comparable performance.
Among them, TD-TR is slightly better in certain cases as it
can capture the temporal dimension of trajectories. MRPA
achieves superior performance among all the three operators
and demonstrates better generality. Our explanation is that
their distance measure ISSD is cumulative and defined on a
local segment. It is more robust than PED or SED that is
defined between the original location and a reference point.

0.5 1.0 1.5 2.0 2.5
distance(km)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

F-
m
ea
su
re

range_query(SingaporeTaxi)

MRPA
TD-TR
DPhull
DOTS

CDR
OPW-TR
SQUISH-E(μ)
STTrace

(a) radius in W-RQ

300 600 900 1200 1500
time window(s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy

knn(SingaporeTaxi)

MRPA
Intersect
DPhull
DOTS

STTrace
OPW-TR
SQUISH-E(λ)
SQUISH-E(μ)

(b) window length in W-kNN

5 10 15 20 25
k

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

knn(SingaporeTaxi)

MRPA
Intersect
DPhull
DOTS

STTrace
OPW-TR
SQUISH-E(λ)
SQUISH-E(μ)

(c) k in W-kNN

0.5 1.0 1.5 2.0 2.5
distance(km)

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

MRPA
TD-TR
DPhull
SQUISH-E(λ)

SQUISH-E(μ)
OPW-TR
SQUISH
CDR

(d) dist threshold in W-TDJ

Figure 4: The accuracy of different query processing
operators w.r.t. varying parameters.

In the online mode, the direction-aware methods (i.e.,
Angular and Interval) work significantly worse than the
other methods as they are sensitive to direction variation
and cannot well capture the location and temporal infor-
mation. DR, Threshold and Persistence are early algo-
rithms designed with linear complexity and simple objective.
Even though they run fast, there is a noticeable performance
margin between these two heuristic algorithms and the
other competitors with higher computation complexity. The
recent linear solutions such as OPERB and ABQS are
improved with more complex processing logic, but still
cannot achieve superior performance. This observation
implies that with the ever increasing computing power in the
sensors, it may not be preferable to design algorithms with
linear complexity. When CPU and memory are not hard

10

Table 8: Performance of query processing operators on the reduced trajectory databases.
Batch Methods

F-measure of range query Accuracy of kNN query F-measure of join query Accuracy of clustering
Taxi Truck GeoLife Taxi Truck GeoLife Taxi Truck GeoLife Taxi Truck GeoLife

DPhull 0.971 0.978 1 0.440 0.863 0.996 0.674 0.862 1 1 0.999 1
TD-TR 0.973 0.999 1 0.432 0.969 0.997 0.680 0.957 1 1 0.999 1
MRPA 0.981 0.998 1 0.602 0.968 0.992 0.886 0.973 1 1 0.999 1

SP 0.658 0.457 0.795 0.36 0.747 0.980 0.512 0.777 0.995 1 0.999 0.997
Intersect 0.649 0.454 0.829 0.483 0.754 0.841 0.626 0.807 0.962 1 0.99 0.997

Error-Search 0.695 0.482 0.957 0.391 0.770 0.963 0.577 0.799 0.991 1 0.997 0.997
Span-Search 0.617 0.452 0.920 0.416 0.76 0.961 0.585 0.832 0.986 1 0.994 0.997

Online Methods
F-measure of range query Accuracy of kNN query F-measure of join query Accuracy of cluster
Taxi Truck GeoLife Taxi Truck GeoLife Taxi Truck GeoLife Taxi Truck GeoLife

Uniform 0.763 0.709 0.966 0.459 0.899 0.965 0.684 0.910 0.954 1 0.999 0.997
OPW 0.959 0.970 1 0.402 0.840 0.995 0.635 0.800 0.990 1 0.996 0.999

OPW-TR 0.980 0.984 1 0.580 0.923 0.992 0.839 0.893 1 1 0.999 0.999
DR 0.804 0.955 1 0.391 0.858 0.993 0.679 0.825 1 1 0.999 0.999

Threshold 0.866 0.612 0.929 0.270 0.715 0.952 0.514 0.696 0.982 1 0.999 0.997
STTrace 0.973 0.959 0.994 0.590 0.900 0.980 0.715 0.940 1 1 0.996 0.997
SQUISH 0.933 0.926 0.987 0.451 0.897 0.976 0.804 0.869 0.995 1 0.996 0.997

CDR 0.969 0.999 1 0.393 0.911 0.991 0.742 0.939 1 1 0.999 0.999
SQUISH-E(λ) 0.925 0.893 0.986 0.513 0.915 0.983 0.876 0.902 1 1 0.999 0.997
SQUISH-E(µ) 0.979 0.995 1 0.583 0.957 0.996 0.866 0.955 1 1 0.997 0.999

BQS 0.955 0.973 1 0.414 0.851 0.997 0.696 0.794 1 1 0.996 1
FBQS 0.955 0.973 1 0.428 0.864 0.996 0.708 0.818 1 1 0.999 1

Angular 0.744 0.450 0.812 0.334 0.686 0.944 0.303 0.707 0.995 0.480 0.574 0.794
Interval 0.620 0.494 0.871 0.278 0.650 0.936 0.255 0.728 0.995 0.429 0.496 0.798
OPERB 0.933 0.954 1 0.366 0.745 0.992 0.464 0.764 0.995 0.526 0.633 0.962
DOTS 0.982 0.998 1 0.660 0.933 0.996 0.618 0.917 1 1 0.997 1
ABQS 0.954 0.973 1 0.411 0.864 0.996 0.699 0.818 1 0.995 0.999 1

Persistence-online 0.913 0.905 0.979 0.338 0.931 0.993 0.554 0.882 0.995 1 0.996 0.994

constraints, it is suggested to develop simplification algo-
rithms that can trade these resources for better compression
quality. STTrace and the SQUISH family share similar
processing logic, by evoking the one with the minimum
SED error or the smallest priority score when a new point
arrives. These algorithms achieve comparable accuracies.
SQUISH-E(µ) works slightly better than SQUISH-E(λ)
and SQUISH because its objective is to minimize the
number of simplified points in the meanwhile keeping the
error below the threshold. With the same compression ratio,
it allows a smaller error threshold. DOTS is the algorithm
that obtains dominating superiority among the three query
processing operators. It is essentially an online version of
MRPA and it further verifies that ISSD is a robust distance
measure in both online and batch simplification modes.
As to the accuracy of clustering, most of the algorithms
can still preserve the trajectory similarity with compression
ratio set to 10. All the batch algorithms achieve perfect
clustering results. Only three algorithms in the online mode,
including Angular, Interval and OPERB, perform poorly
in the task of clustering. The reason could be that the
similarity measure used in trajectory clustering takes into
account perpendicular distance, parallel distance and angle
distance, and is robust to different error metrics used in the
simplification algorithms. The three algorithms with poor
performance conduct only one-pass scan on the datasets
and may miss sketch information that are important for
clustering. Note that the result patterns are not sensitive
to the number of clusters as we also conducted experiments
on varying number of clusters (up to 3000) and obtained
similar findings.

We also evaluate the query processing performance with
varying parameters in the Taxi dataset. For each operator,
we pick the three best algorithms in the batch mode and
five best algorithms in the online mode. Figure 4 depicts
the trending patterns with varying parameters in different
types of operators. We can see that the F1-measure in W-
RQ (or W-TDJ) increases with larger radius (or distance
threshold). MRPA consistently outperforms the remaining
batch algorithms in various scenarios. In the online mode,
DOTS also demonstrates stable superiority against other
online algorithms.

Finally, we conduct a correlation analysis among the
query processing operators and error metrics. We use
Pearson product-moment correlation [40], i.e, ρX,Y =∑

(X−X̄)(Y−Ȳ)√∑
(X−X̄)2

∑
(Y−Ȳ)2

. The error-metric vector contains the

opposite number of error values and the query-metric vector
contains the accuracy values. As shown in Figure 5, SED
is closely related to PED as they both measure the error in
the Euclidean space and SED is essentially an extension of
PED. We also observe that SED is also positively correlated
to Speed and W-kNN because Speed and the EDR measure
in W-kNN take into account both position and temporal
information. The direction-aware metric is negatively
correlated with most of the metrics. The metric with the
highest correlation with direction-metric is the accuracy of
trajectory clustering. In fact, trajectory clustering does not
show clear preference on certain simplification algorithms.

5. CONCLUSION AND FUTURE DIREC-
TION

11

P
E

D

S
E

D

D
ir
e
c
ti
o
n

S
p
e
e
d

W
-R

Q

W
-k

N
N

W
-T

D
J

C
lu

s
te

ri
n
g

PED

SED

Direction

Speed

W-RQ

W-kNN

W-TDJ

Clustering
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5: Correlation analysis of the error metrics.

In this paper, we conduct so far the most comprehensive
evaluation on trajectory simplification with 25 algorithms
and 5 GPS datasets. In addition, we examine the data
usability as an alternative performance indicator for com-
pression quality. Three types of popular spatio-temporal
query operators are evaluated on the reduced database. The
key observations worth noting are summarized as following:

1. The direction-aware trajectory simplification algo-
rithms work poorly in practice. Even though they
are theoretically shown to preserve the position infor-
mation as well, they cannot kill two birds with one
stone. The derived errors under multiple distance
metrics are dramatic. Moreover, their accuracies in
supporting spatio-temporal operators in the reduced
database are also disappointing. Thus, this line
of algorithms are recommended only in a specific
application where direction is the most important
information to preserve.

2. The distance metric used for optimization plays a
crucial role in determining the compression quality.
ISSD is a cumulative distance measure on top of
SED and the two algorithms MRPA and DOTS
designed for ISSD perform persistently well among
various testing scenarios. The algorithms with SED
metric work noticeably better than those with PED
in most cases, as they further consider the temporal
dimension of trajectories. The algorithms designed for
minimizing direction errors perform the worst.

3. Unless in an application with very special require-
ments, MRPA and DOTS are two algorithm rec-
ommended for batch and online modes, respectively.
This is because they achieve the best performance in
multiple error metrics and are effective in supporting
spatio-temporal query processing in the reduced tra-
jectory database.

We also present several future directions in trajectory
simplification that may be worthy of exploration:

1. Nowadays, the cost of hardware has been decreasing.
When the CPU and memory resources are not hard
constraints, it is suggested to trade the computation
time and memory space for higher compression quality.
For instances, MRPA and DOTS apply a more com-
plex distance metric, which requires more computation
time. They are essentially trading calculation cost for
more effective simplification.

2. Designing an effective distance metric is crucial for
compression performance. The problem of trajec-
tory simplification can be viewed as an instance of
similarity measure learning and we can explore the
possibilities of learning a new error metric that is
suitable for a concrete application.

3. The current trajectory simplification algorithms only
leverage the spatial and temporal redundancy within a
particular trajectory. It may be interesting to explore
the inter-trajectory redundancy to further improve the
compression quality.

6. ACKNOWLEDGEMENT
This work is supported in part by the National Natural

Science Foundation of China under grants No. 61602087,
61632007, 61702320, 61602488 and 61632016, the 111
Project No. B17008, the Fundamental Research Funds for
the Central Universities under grants No. ZYGX2016J080,
ZYGX2014Z007, the Talent Programme of Renmin Univer-
sity of China, the Tencent Social Ads Rhino-Bird Focused
Research Grant and the Shanghai Municipal Education
Commission Funds of Young Teacher Training Program
No.ZZSDJ17021.

7. REFERENCES
[1] T. Ahmed, T. B. Pedersen, and H. Lu. Finding dense

locations in symbolic indoor tracking data: modeling,
indexing, and processing. GeoInformatica, 21(1):119–150,
2017.

[2] R. Bellman. On the approximation of curves by line
segments using dynamic programming. Commun. ACM,
4(6):284–, June 1961.

[3] H. Cao and O. Wolfson. Nonmaterialized motion
information in transport networks. In ICDT, pages
173–188, 2005.

[4] H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal
data reduction with deterministic error bounds. VLDB J.,
15(3):211–228, 2006.

[5] W. Cao and Y. Li. Dots: An online and near-optimal
trajectory simplification algorithm. Journal of Systems and
Software, 126(Supplement C):34 – 44, 2017.

[6] L. Chen and R. T. Ng. On the marriage of lp-norms and
edit distance. In VLDB, pages 792–803, 2004.

[7] L. Chen, M. T. Özsu, and V. Oria. Robust and fast
similarity search for moving object trajectories. In
SIGMOD, pages 491–502, 2005.

[8] M. Chen, M. Xu, and P. Fränti. A fast $o(n)$
multiresolution polygonal approximation algorithm for
GPS trajectory simplification. IEEE Trans. Image
Processing, 21(5):2770–2785, 2012.

[9] Y. Chen and J. M. Patel. Design and evaluation of
trajectory join algorithms. In GIS, pages 266–275, 2009.

[10] P. Cudré-Mauroux, E. Wu, and S. Madden. Trajstore: An
adaptive storage system for very large trajectory data sets.
In ICDE, pages 109–120, 2010.

[11] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to represent a

12

digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and
Geovisualization, 10(2):112–122, 1973.

[12] L. Duan, T. Pang, J. Nummenmaa, J. Zuo, P. Zhang, and
C. Tang. Bus-olap: A data management model for
non-on-time events query over bus journey data. Data
Science and Engineering, 3(1):52–67, Mar 2018.

[13] J. Fan, G. Li, L. Zhou, S. Chen, and J. Hu. SEAL:
spatio-textual similarity search. PVLDB, 5(9):824–835,
2012.

[14] Q. Fan, D. Zhang, H. Wu, and K. Tan. A general and
parallel platform for mining co-movement patterns over
large-scale trajectories. PVLDB, 10(4):313–324, 2016.

[15] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis.
Nearest neighbor search on moving object trajectories. In
SSTD, pages 328–345, 2005.

[16] J. Hershberger and J. Snoeyink. Speeding up the
douglas-peucker line-simplification algorithm. Technical
report, Vancouver, BC, Canada, Canada, 1992.

[17] G. Hu, J. Shao, F. Liu, Y. Wang, and H. T. Shen.
If-matching: Towards accurate map-matching with
information fusion. IEEE Trans. Knowl. Data Eng.,
29(1):114–127, 2017.

[18] P. Katsikouli, R. Sarkar, and J. Gao. Persistence based
online signal and trajectory simplification for mobile
devices. In GIS, pages 371–380, 2014.

[19] B. Ke, J. Shao, and D. Zhang. An efficient online approach
for direction-preserving trajectory simplification with
interval bounds. In MDM, 2017.

[20] B. Ke, J. Shao, Y. Zhang, D. Zhang, and Y. Yang. An
online approach for direction-based trajectory compression
with error bound guarantee. In APWeb, pages 79–91, 2016.

[21] G. Kellaris, N. Pelekis, and Y. Theodoridis. Map-matched
trajectory compression. Journal of Systems and Software,
86(6):1566–1579, 2013.

[22] E. J. Keogh. Exact indexing of dynamic time warping. In
VLDB, pages 406–417, 2002.

[23] R. Lange, F. Dürr, and K. Rothermel. Efficient real-time
trajectory tracking. VLDB J., 20(5):671–694, 2011.

[24] J. Lee, J. Han, and K. Whang. Trajectory clustering: a
partition-and-group framework. In SIGMOD, pages
593–604, 2007.

[25] C. Lin, C. Hung, and P. Lei. A velocity-preserving
trajectory simplification approach. In TAAI, pages 58–65,
2016.

[26] X. Lin, S. Ma, H. Zhang, T. Wo, and J. Huai. One-pass
error bounded trajectory simplification. PVLDB,
10(7):841–852, 2017.

[27] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, and
R. Jurdak. Bounded quadrant system: Error-bounded
trajectory compression on the go. In ICDE, pages 987–998,
2015.

[28] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, J. Lee, and
R. Jurdak. A novel framework for online amnesic trajectory
compression in resource-constrained environments. IEEE
Trans. Knowl. Data Eng., 28(11):2827–2841, 2016.

[29] K. Liu, Y. Li, J. Dai, S. Shang, and K. Zheng. Compressing

large scale urban trajectory data. In CloudDP, pages
3:1–3:6, 2014.

[30] C. Long, R. C. Wong, and H. V. Jagadish.
Direction-preserving trajectory simplification. PVLDB,
6(10):949–960, 2013.

[31] C. Long, R. C. Wong, and H. V. Jagadish. Trajectory
simplification: On minimizing the direction-based error.
PVLDB, 8(1):49–60, 2014.

[32] N. Meratnia and R. A. de By. Spatiotemporal compression
techniques for moving point objects. In EDBT, pages
765–782, 2004.

[33] J. Muckell, J. Hwang, C. T. Lawson, and S. S. Ravi.
Algorithms for compressing GPS trajectory data: an
empirical evaluation. In GIS, pages 402–405, 2010.

[34] J. Muckell, J. Hwang, V. Patil, C. T. Lawson, F. Ping, and
S. S. Ravi. SQUISH: an online approach for GPS trajectory
compression. In COM.Geo, pages 13:1–13:8, 2011.

[35] J. Muckell, P. W. Olsen, J. Hwang, C. T. Lawson, and S. S.
Ravi. Compression of trajectory data: a comprehensive
evaluation and new approach. GeoInformatica,
18(3):435–460, 2014.

[36] A. Nibali and Z. He. Trajic: An effective compression
system for trajectory data. IEEE Trans. Knowl. Data
Eng., 27(11):3138–3151, 2015.

[37] M. Potamias, K. Patroumpas, and T. K. Sellis. Sampling
trajectory streams with spatiotemporal criteria. In SSDBM,
pages 275–284, 2006.

[38] R. Song, W. Sun, B. Zheng, and Y. Zheng. PRESS: A novel
framework of trajectory compression in road networks.
PVLDB, 7(9):661–672, 2014.

[39] G. Trajcevski, H. Cao, P. Scheuermann, O. Wolfson, and
D. Vaccaro. On-line data reduction and the quality of
history in moving objects databases. In MobiDE, pages
19–26, 2006.

[40] E. Turunen. Using guha data mining method in analyzing
road traffic accidents occurred in the years 2004–2008 in
finland. Data Science and Engineering, 2(3):224–231, Sep
2017.

[41] R. van Hunnik. Extensive comparison of trajectory
simplification algorithms. In Master Thesis, 2017.

[42] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering
similar multidimensional trajectories. In ICDE, pages
673–684, 2002.

[43] Y. Wang, D. Zhang, Q. Liu, F. Shen, and L. H. Lee.
Towards enhancing the last-mile delivery: An effective
crowd-tasking model with scalable solutions.
Transportation Research Part E: Logistics and
Transportation Review, 93:279 – 293, 2016.

[44] D. Yang, J. Guo, Z.-J. Wang, Y. Wang, J. Zhang, L. Hu,
J. Yin, and J. Cao. Fastpm: An approach to pattern
matching via distributed stream processing. Information
Sciences, 2018.

[45] D. Zhang, D. Yang, Y. Wang, K. Tan, J. Cao, and H. T.
Shen. Distributed shortest path query processing on
dynamic road networks. VLDB J., 26(3):399–419, 2017.

[46] R. Zhong, J. Fan, G. Li, K. Tan, and L. Zhou.
Location-aware instant search. In CIKM, pages 385–394,
2012.

13

