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Abstract—Continuous proximity detection monitors the real-
time positions of a large set of moving users and sends an alert
as long as the distance of any matching pair is smaller than the
threshold. Existing solutions construct either a static safe region
with maximized area or a mobile safe region with constant
speed and direction, which cannot not capture real motion
patterns. In this paper, we propose a new type of safe region
that relies on trajectory prediction techniques to significantly
reduce the communication I/O. It takes into account the
complex non-linear motion patterns and constructs a stripe
to enclose the sequence of future locations as a predictive
safe region. The stripe construction is guided by a holistic
cost model with the objective of maximizing the expected time
for the next communication. We conduct experiments on four
real datasets with four types of prediction models and our
method reduces the communication I/O by more than 30% in
the default parameter settings.

I. INTRODUCTION

Due to the high availability of location positioning sensors

and rising popularity of location sharing services, novel

applications in real-time trajectory analyzing and monitoring

have emerged as hot research topics and attracted great

attention. In this paper, we study the problem of continuous

proximity detection among a large group of moving users

that are connected by an interest graph. The problem tracks

user locations and sends alert messages to the matching pairs

as long as their distance is smaller than a specified threshold.

It finds a wide scale of applications:

1) Social friendship tracking. There have been a number

of friend-locator services such as Ipoki1 that allow users

to share their locations with friends. The proximity

detection functionality is a natural extension of such

services to automatically detect and alert whether there

are friends nearby.

2) Location-based social discovery. Proximity detection

can serve as an attractive feature in location-based

dating apps such as Tinder2. Alarming messages will be

sent to each pair of users with matching profiles when

their physical distance is small enough.
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3) Item trading in MMOG. In massively multiplayer

online games, two users can be virtually connected in

an interest graph when one is equipped with an item

desirable for the other. A trading request can be sent to

the matching pairs if they are visible to each other in

the virtual world.

In spite of practical usefulness, continuous proximity

detection is both computationally and communicationally

expensive. It is more challenging than traditional continuous

spatial kNN/range queries [2], [6], [22] because in our

problem setting, each object is considered as a moving query

and we need to track the dynamic pair distance in all the

timestamps. Thus, a straightforward solution has to update

the locations of all the moving users in every timestamp for

distance validation to ensure no missing alert. To resolve the

efficiency issues, the essential tactic among previous work

of continuous query processing is to customize a type of safe

regions for a particular query. Each moving query object is

then associated with a safe region in a tailored shape such

that no communication is required to report its latest position

as long as it is still located within the safe region.

There have been two types of safe regions proposed

for continuous proximity detection. In [3], Amir et al.

proposed a static safe region in the form of a polygon. As

shown in Figure 1(a), three users {u1, u2, u3} are friends to

each other. Each pair (ui, uj) is associated with an alert

radius, denoted by rij . There is a warning area marked

with crossings between each pair of users, with width set

to rij . In this way, each user is enclosed by a polygon

whose edges are the boundaries of the warning areas. The

next communication occurs when a user crosses one of

the boundaries. If there are several friends nearby, the safe

region may update frequently, incurring many times of

communication I/O. Later on, an alternative type of safe

region in the form of moving circles was proposed in [19].

As shown in Figure 1(b), a mobile safe region is constructed

for o1 at timestamp t1 and moves in the same direction

as o1 with constant speed. The next communication occurs

at t2 when the user moves out of the mobile region. It is

noticeable that such an assumption of linear motion pattern



is not realistic. If the driving/walking trajectory is curving,

the user is likely to deviate the original moving direction

many times, incurring frequent safe region re-construction.

(a) Static safe region (b) Mobile safe region

Figure 1. Examples of Safe Region Construction.

In this paper, we propose a new type of safe region

that leverages trajectory prediction techniques to capture

the dynamic and complex motion patterns of real users,

and exhibits effectiveness in reducing the number of com-

munication between moving users and backend servers.

More specifically, our safe region is represented by a

stripe with fixed-radius, enclosing a sequence of predictive

points derived from an imperfect model. To determine

the optimal length and radius of the stripe, we need to

consider simultaneously two types of communication that

have conflicting requirements in terms of stripe area: one is

location update from user to server (which can be reduced

by larger stripe area) and the other is probing request from

server to user (which can be reduced by smaller stripe area).

We propose a holistic cost model to achieve a good tradeoff,

with the goal of maximizing the expected time for the next

communication.

We conduct experiments on four real datasets that cover

the motion patterns of taxi drivers, pedestrians and trucks.

In the experiments, we examine four existing trajectory

prediction models, including RMF [15], HMM [13], R2-

D2 [23] and Kalman filter [20]. Our objective is to verify

the effectiveness of our proposed safe region built on top of

various prediction models. The results show that, compared

to the state-of-the-art solution, our predictive safe region can

reduce the communication I/O by more than 30% in the

default parameter settings.

To sum up, we make the following contributions in this

paper:

• We propose a new type of safe region construction,

which is able to capture the non-linear motion patterns,

to solve the problem of continuous proximity detection.

• We propose a holistic cost model to guide the safe

region construction, with the objective of minimizing

the communication cost.

• We conduct extensive experiments on four datasets and

examine the effectiveness of our prediction safe region

construction on top of four types of prediction models.

The results verified the superiority of our methods.

The rest of the paper is organized as follows. We present

problem definition in Section II and review related work

in Section III. In Section IV, we present our high-level

processing framework for continuous proximity detection.

In Section V, we propose to use fixed-radius stripe as our

predictive safe region and a cost model for stripe construc-

tion. Extensive experiments are conducted in Section VI to

compare the accuracies of prediction models and evaluate

the performance of our predictive safe region in terms of

communication I/O. Section VII concludes the paper.

II. PROBLEM DEFINITION

Our system monitors a large group of moving users

virtually connected by an interest graph G = (V,E).
G is an undirected graph and is used as a general data

model to capture various matching semantics between two

users for a wide scale of applications. For example, in

the social friendship tracking, two users are connected

according to their relationship in the online social networks;

in the location-based dating apps, we are interested in

investigating whether a user’s profile matches the other’s

dating requirement in terms of age, salary and other

attributes; and in the item trading application in MMOG,

there is an edge between user u and user w in the interest

graph if one is equipped with an item that is desirable to the

other. For the ease of presentation, we call u and w “friends”

if they are connected by an edge in the interest graph.

Each edge (u,w) in the interest graph is associated with

an alerting radius denoted by ru,w, which can be either a

system parameter or specified by users. If u and w have

different preference on the distance for alerting, say ru and

rw, we set ru,w = min{ru, rw} to avoid spam messages.

In other words, a message is sent only if u and w are

matching users and their current distance meets the alarming

requirements of both users. We assume that the temporal

dimension is split into fixed-size intervals, each with length

Δt, and all the moving users report their current locations

at the beginning of each interval for proximity detection.

Let d(u,w, ti) denote the Euclidean distance between u
and w at timestamp ti = iΔt. We use Euclidean distance

instead of road network distance because in the real-time

monitoring application, it is very challenging to support road

network distance. First, the calculation of network distance

is much more expensive than Euclidean distance, even with

the support of indexing techniques. Second, the safe region

techniques are difficult to be applied as the calculation of

network distance between a point and a region is also very

expensive. Thus, we only consider the Euclidean distance as

a practical solution for real-time proximity tracking.

In the following, we formally define the continuous

proximity problem:

Definition 1: Continuous Proximity Detection

Given a group of moving users connected by an interest

graph G = (V,E), the continuous proximity detection



problem sends alert messages to u and w at timestamp ti if

(u,w) ∈ E, d(u,w, ti) < ru,w and d(u,w, ti−1) ≥ ru,w.

In our definition, we avoid spam messages by only

sending an alarming message when two matching users meet

their distance requirements for the first time. This can be

implemented by maintaining a status for each pair of friends.

When u and w are alerted in t, the status for (u,w) is set

to be active. In the subsequent timestamps, if the distance

is still smaller than ru,w, no alert messages will be sent.

Otherwise, we reset the status of (u,w).
In our system implementation, we adopt the client-

server architecture used in many spatial continuous query

processing applications [14], [19], [5]. As shown in Figure 2,

the server maintains the interest graph and the alert radius

of each user. There are six moving users with different

interest radii, represented in circles with different sizes. In

each timestamp, all the moving users report their latest status

information to the server. The server then checks the distance

between all pairs of friends in the interest graph and sends

alert messages to those pairs with distance smaller than the

alert radius. In this example, u1 and u2 will be alerted in

timestamp t2 because their distance is smaller than both of

the alert radii.

Figure 2. A client-server architecture for continuous proximity detection.

III. RELATED WORK

A. Continuous Proximity Detection

The problem of continuous proximity detection was first

proposed in [3] and solved by constructing a static safe

region in the form of a polygon for each moving user. As

long as the user is in the safe region, he/she does not need

to report the location in the subsequent timestamps. The

mobile safe region technique [19] was proposed to construct

a circle that moves along with the user with constant speed

and direction. It works well if the users are moving with

linear motion patterns. However, when driving/walking in

a curving path, the user is likely to deviate the original

moving direction many times, incurring a large amount

of communication I/O. In [9], given a large number of

concurrent proximity queries within the same timstamp,

Kazemitabar et al. focused on determining an appropriate

sequence of probing requests to reduce communication I/O.

Intuitively, a moving object within a larger safe region is

more likely to be probed.

In this paper, we propose a novel concept named predic-

tive safe region for continuous proximity detection. To the

best of our knowledge, this is the first work to capture the

dynamic and complex moving patterns in a cost model to

support a new type of safe region construction.

B. Trajectory Prediction Approaches

Trajectory prediction is a well-studied topic and various

methods have been proposed. In [15], Tao et al. proposed

recursive motion function (RMF) to support a broad class

of non-linear motion patterns, which eventually can improve

the efficiency of answering predictive range query in spatio-

temporal databases. RMF does not make any assumption on

prior movement patterns and can derive the particular motion

of each object from its recent history. Its generality is built

on the observation that any polynomial motion function of

degree D can be converted to a linear recurrence after D+1
differentiations. The parameters to be learned are stored in a

motion transition matrix, which can be learned by applying

singular value decomposition (SVD). The advantages of

RMF are that it only requires a small number of recent points

for prediction and the model is friendly for implementation.

However, its prediction accuracy is the major concern.

R2-D2 [23] was designed for dynamic environments

where the motion patterns may change frequently. Unlike

RMF that only relies on the recent locations of a single

trajectory, R2-D2 needs to first obtain a set of similar

trajectories from the historical database, with the help of a

grid-based index to improve the efficiency. Then, it applies

sophisticated machine learning techniques such as particle

filter [1] on the selected reference trajectories to construct

a local model for prediction. It shows better prediction

accuracy than RMF because the similar reference trajectories

can provide useful and reliable information.

Hidden Markov Model (HMM) [13] is a classic model for

sequence prediction. To predict future paths, we use the basic

version of HMM in the discrete form. We split the space into

grid cells and treat each cell as a state. Our objective is to

learn the transition probability between the cells, which is

trained by the Baum-Welch algorithm. Then, we use forward

algorithm to infer a future path with the highest probability.

We also examine the model of Kalman filter [20] in the

application of trajectory prediction. It is similar to a hidden

Markov model except that the state space of the latent

variables is continuous and all latent and observed variables

have Gaussian distributions. The procedure of Kalman filter

consists of two steps: predict and update. The predict phase

uses the previous state information to produce an estimation

of the current state. Subsequently in the update phase,

the current a priori prediction is combined with the new

observation data to refine the estimation. The performances

of these prediction models will be examined in Section VI-B.



Table I
NOTATION TABLE

vu the moving speed of user u
Nu the friends of u in the interest graph
ru the alert radius set by user u
lu the latest precise location of user u
d(u,w) the distance between u and w
ru,w min(ru, rw)
Su the stripe of user u as a safe region
su the stripe radius
m the stripe length
Mu,w the match region between user u and w

C. Continuous Query Processing

Another problem that is closely related to our research is

the processing of continuous spatial queries such as contin-

uous spatial kNN/range queries [6], [22], continuous spatial

keyword queries [17], continuous shortest path query [18],

[21] and continuous boolean expression matching [5], [4]. To

reduce the communication overhead, these methods typically

construct safe regions for the moving users and require users

to update their locations only when they move out of their

safe regions. Moreover, users within the safe regions can

safely disconnect from the server as long as there is no

matching event in their neighborhood.

The above works assume that one of the matching parities

is moving and the other is located in a static position.

In contrast, our continuous proximity detection problem is

more challenging because it assumes that both matching

parties are moving objects.

D. Real-time Trajectory Tracking

In real-time trajectory tracking , each moving user reports

his location to the server when the distance between the real

location and the predicted location at the server side exceeds

the threshold. TRAX [7] is a system supporting various

object tracking techniques with low communication cost.

EnTracked [10] and [11] are two works that track mobile

devices of pedestrians and provide a configurable interface to

adjust the tradeoff between energy consumption and tracking

accuracy. These works cannot be applied in our proximity

detection problem because we do not need to track user

locations all the time. When there are no matching users

nearby, it wastes communication I/O to track the precise

locations that of no help to the proximity detection.

IV. CONTINUOUS MATCH FRAMEWORK

In this section, we present a high-level framework for

continuous proximity detection based on two concepts,

namely safe region and match region.

A. Safe Region

In many continuous spatial-query applications [22], [6],

[2], [5], the query location has been updating as each user

moves around, causing the results to change accordingly.

A naive processing framework for this type of query is to

request all the users to report their location updates in each

timestamp. With the new location information, the backend

server re-calculates the results and notifies the users if there

is an update. Obviously, the framework is wasteful in both

network and CPU resources, incurring a huge amount of

unnecessary communication and calculation overhead, espe-

cially when the query results of two consecutive timestamps

are identical.

To mitigate the issue, most applications construct a safe

region for each user such that the next communication is

incurred when the user moves out of the safe region or

the server actively sends a probing request to retrieve the

exact user location. Since there is no need to report location

update in each timestamp, a great amount of network

communication I/O can be saved. Moreover, there are fewer

number of requests sent to the server and the computation

cost in the server side can be reduced as well.

The construction of a safe region is normally query-

dependent. In our application, a user is said to be safe

if his/her distance to all the neighbours in the interest

graph is larger than ru,w. Consequently, we formally define

the concept of safe region in the problem of continuous

proximity detection as follows:

Definition 2 (Safe Region): The safe region Su for a user

u is a region such that u’s location lu ∈ Su and for any

friend w, we have d(lu, Sw) > ru,w.

In the implementation, the backend server constructs a

safe region for each user. From the server’s perspective,

it only knows the fact that the user is located within

the safe region. However, the precise user location is not

available unless the server actively sends a probing request

for location update. The optimal safe region construction is a

challenging task. On the one hand, we prefer a larger region

such that the user can stay within it as long as possible. On

the other hand, all the users are moving objects. When the

minimum distance between the safe regions of two friends u
and w is smaller than ru,w, the server has to send a probing

request for location update of u and w to guarantee that no

matching alert is missed. We will present our safe region

representation and construction in the next section. In this

section, we simply treat them as black-boxes and focus on

the high-level search framework.

B. Match Region

When a matching pair (u,w) is detected with distance

smaller than ru,w, an alert notification is sent. At this

moment, the concept of safe region is not working because

we cannot construct a region for u and w satisfying the

constraints in Definition 2. The two users have to report

location update at the subsequent timestamps until their

distance is larger than ru,w again.

To save the communication cost for the above matching

scenario, we propose a new concept named match region
which is complementary to the safe region. Given a user u



with a group of matching friends, we remove each matching

pair (u,w) from the interest graph and maintain a match

region Mu,w. When the distance d(u,w) is larger than ru,w,

we remove the match region and fill the edge back to the

graph; for the remaining non-matching friends, the original

safe region can still be applied.

The intuition behind the match region is that as long

as two matching friends u and w are located within their

match region Mu,w, their distance must be smaller than ru,w.

Thereby, we define our match region as follows:

Definition 3 (Match Region): The match region for a

matching pair (u,w) is defined as a circle with center at
lu+lw

2 and radius
ru,w

2 .

Figure 3 shows that u and w are matching at timestamp ti.
Then, we construct a match region in the form of a circle for

the matching pair. The center is (u.x+w.x
2 , u.y+w.y

2 ) and the

radius is
ru,w

2 . At timestamp ti+1, u and w will compare

their new locations with the match region. Since both

locations are within the match region, no communication

is triggered. If u and w share the same trajectory after they

meet, the match region can help save a considerable amount

of communication I/O. Finally, at timestamp ti+2, both u
and w move out of the match region and their distance is

now larger than ru,w. They will report their locations to the

server for new safe region construction.

Figure 3. An example of match region construction.

C. High-Level Search Framework

The search framework for continuous proximity detection

is illustrated in Algorithm 1. In the initialization step (lines

1-7), all the users report their current locations to the

backend server. When receiving the location update, the

server first detects whether there are friend-matching events.

If yes, a match region Mu,w is constructed for each matching

pair and sent together with an alert notification to u and w.

If a user does not match any friend in the first timestamp,

no match region will be maintained. In the meanwhile,

the server initializes a safe region Su for each user. The

details of safe region initialization will be introduced in

Section V-C.

After the initialization, each user u is associated with

m match regions (0 ≤ m ≤ |N(u)|) and one safe region

Su. At the subsequent timestamps, user u will compare his

location with the maintained match region and safe region.

If u moves out of any match region Mu,w, he/she will

update the location to the server. Then, the server sends

a probing request to the friend w to examine whether their

precise distance is still within the alert radius. If yes, Mu,w is

updated based on the new locations of u and w. Otherwise,

Mu,w is deleted. Meanwhile, we need to update the safe

region Su and Sw based on their new locations.
After the match region update, user u also needs to check

whether he/she moves out of the safe region. If yes, the

server needs to collect the latest location of u and update

the safe region. We will present an algorithm for safe region

update in Section V-D.

Algorithm 1: Continuous Proximity Detection

1. if timestamp is t1 then
2. all the users report their locations to server
3. for each matching pair (u,w) do
4. construct Mu,w

5. send alter notification and Mu,w to u and w
6. for each user u do
7. init Su

8. for each subsequent timestamp ti do
9. for each user u do
10. for each match region Mu,w do
11. if u moves out of Mu,w then
12. u and w report their locations to server
13. set loc[u][ti]← 1 and loc[w][ti]← 1
14. if d(u,w) ≤ ru,w then
15. update Mu,w based on the new locations
16. else
17. delete Mu,w from users u and w
18. update Su and Sw

19. if u moves out of safe region Su then
20. u reports the location to server if loc[u][ti] �= 1
21. update Su

V. PREDICTIVE SAFE REGION

The static safe region method [3] assumes that users are

random walkers and moving in all the directions with the

same probability. When constructing a new safe region for

a user, it scans all the friends and builds a barrier w.r.t each

friend. These barriers or boundaries constitute a polygon

as the safe region. However, the construction method only

utilizes the location information between each pair of friends

while neglecting the user motion pattern.
In this paper, we look at the problem from a new

perspective and propose a novel concept named predictive
safe region. If the future locations of a user are predictable,

we can construct a safe region along the predicted path.

Obviously, the higher the prediction accuracy is, the longer

the user will stay in the safe region. We treat the trajectory

prediction algorithm as a black-box and assume that any

predicting techniques [15], [8], [23] that produce a sequence

of locations in the subsequent timestamps can be applied.

The predictive safe region is then built on top of the the

sequence of future locations. In this section, we represent

the predictive safe region in the form of a time-independent

stripe with fixed radius.

A. Fixed-Radius Stripe
Let the output of a trajectory prediction algorithm at

timestamp ti be a sequence of locations p1, p2, . . . , pm,



where pj is the predicted location at timestamp ti+j . In

the ideal scenario, the prediction algorithm is perfect and

we can model the predictive safe region as a sequence of

locations. Since we have known the precise future locations

of all the users, there is no more probing overhead and the

communication cost is optimal. However, prediction error

occurs frequently in the real scenario and the safe region

must be designed to be error-tolerant. We propose to build a

fixed-radius stripe along the predicted path as our predicted

safe region.

Definition 4: Stripe with Fixed Radius

Given a sequence of future locations p1, p2, . . . , pm
for a user u, the fixed-radius stripe extends

the line segments pipi+1 by radius su, i.e.,

R = {o| min
1≤i≤m−1

{dist(o, pipi+1)} ≤ su}.

where su and m are two parameters to determine the shape

of the stripe. An example of stripe derived from the next

seven locations is illustrated in Figure 4. Note that when

we determine whether the user is in the predictive safe

region, we do not consider the temporal attribute. In the next

timestamp, we compare the user location with the whole

stripe instead of the predicted location. This provides more

error tolerance when a user moves along the predicted path

but violates the speed assumption. For example, existing

prediction approaches may assume the user move forward

with constant speed in Figure 4. Even though the distance

between the real locations and the counterparts in the

predicted path is quite large, the user is still considered

within the predicted safe region.

Figure 4. An example of fixed-radius stripe
We assume that the prediction error of existing ap-

proaches [15], [8], [23], measured by the distance between

the predicted location and the precise location, follows

Gaussian distribution N(0, σ2). Each approach is associated

with a particular parameter σ to measure its intrinsic

predication accuracy. If an approach is superior in predicting

future locations, it is associated with a smaller value of σ.

Under such assumptions, we present how to determine a

good fixed-radius stripe by proposing a cost model.

B. Cost Model for Stripe Construction

The primary objective of our system is to minimize

the number of communication I/O. We first identify all

the possible cases in which new communication will be

triggered for a moving user.

1) The user moves out of his current safe region. He/She

needs to report the new precise location to the server.

At the server side, a new safe region is calculated and

sent back to the user.

2) The user is still in the safe region but receives a probing

request from the server. This occurs when the minimum

distance of a friend is smaller than the alert radius and

the exact distance between the two users is uncertain.

The user in the safe region has to report the precise

location to avoid missing alert. After the probing, the

server will construct a new safe region for the probed

user.

3) The user receives an alert message from the server. This

occurs when the distance of a friend is smaller than the

alert radius.

4) The user moves out of a match region and needs to

report the new location.

Note that the third type of communication I/O is inevitable

and cannot be optimized. In addition, the safe region and

match region are functioned upon different groups of friends.

Thus, the next timestamp when a user moves out of a

match region will not be affected by how the safe region

is constructed. Thereafter, we only need to consider the first

two types of communications in our cost model. The first

type prefers a larger safe region so that the user can stay in

the safe region for a longer time. However, the second type

prefers a smaller safe region so that its minimum distance

to the friends will not be too small. This can help trigger

fewer probing requests from the server.

To handle the conflicting requirements, we propose a

new cost model to minimize an objective cost function,

which is measured by the expected number of the two

types of communication I/O for a user. We assume that

the underlying trajectory prediction model can predict the

next m steps of a user with high confidence. Our goal is to

determine a good radius su of the stripe with m segments

such that the elapsed time before the next communication

is maximized. Let Em denote the elapsed time for the user

to move out of the stripe with radius su and Ep denote the

elapsed time for the next probing request from the server.

Let fobj(s
u) = min(Em, Ep), our objective function is

argmin
su

fobj(s
u) (1)

Intuitively, when su increases, the safe region becomes

larger and more error-tolerant. It takes a longer time for

a user to move out of the stripe, resulting in larger Em.

However, it becomes more likely for the user to be probed

by friends nearby, resulting in smaller Ep. Therefore, the

best su occurs when Em = Ep.



C. Safe Region Initialization

In the system initialization, the server collects the loca-

tions of all the users and checks the spatial distance between

each pair of friends. If the distance is found to be smaller

than ru,w, two alert messages are sent to u and w. In the

meanwhile, the server constructs a static safe region, denoted

by Su, for each user u. The safe region is a circle centered

at user u’s current position with radius su. For each pair of

friends (u,w), the radii su and sw have to meet the following

requirement to ensure safety:

su + sw + ru,w ≤ τu,w (2)

where, τu,w is the distance between the center points of

the two circles. Once the constraint is satisfied for all the

users, we can prove the safety of circle Su via the following

lemma.

Lemma 1: If su+sw+ru,w ≤ τu,w is satisfied for all the

users, there is no matching pair whose distance is smaller

than their alert radius.

Proof: Let M(u) denote the set of friends of u in the

interest graph. For any w ∈ M(u), we know that u ∈ Su and

w ∈ Sw. Thus, their distance dist(u,w) ≥ dist(Su, Sw) =
τu,w − su − sw ≥ ru,w.

Since this is the initialization step and we lack recent tra-

jectories for prediction, we assume that the users move with

constant speed and direction in the following timestamps.

The expected elapsed time to leave the circle is

Em =
su

vu
, (3)

where vu is the moving speed of user u.

To estimate Ep, the worst case occurs when all the friends

are moving towards user u. In this case, the elapsed time for

the next probing request is

Ep = min
w∈M(u)

τu,w − su − ru,w
vw

(4)

Let Em = Ep, we have

su = min
w∈M(u)

vu(τu,w − ru,w)

vu + vw
(5)

We prove that the above assignment satisfies the distance

constraint in Equation 2.

Lemma 2: If we set su = min
w∈M(u)

vu(τu,w − ru,w)

vu + vw
, we

have su + sw + ru,w ≤ τu,w for each friend w.

Proof: For each pair of friend (u,w), we have

su + sw ≤ vu(τu,w − ru,w)

vu + vw
+

vw(τu,w − ru,w)

vu + vw
= τu,w − ru,w

D. Safe Region Update

In Section V-C, we have studied safe region initialization

when the precise locations of all the users are available.

It corresponds to the case of m = 1 and the prediction

accuracy is 100%. Here, the estimation of Em and Ep for

new safe region construction is more challenging. First, the

precise locations of friends may not be available. If the

friends are in the safe region, the server is not aware of their

precise locations and uses the stripes as an approximation.

Otherwise, they also move out of the safe region at the

current timestamp and report their new locations to the

server. Second, we need to take into account the prediction

error when estimating Em and Ep. We propose a simplified

model to estimate the probability of staying in the stripe with

radius su. Since the predicted distance error is measured by

the Gaussian distribution, if the user is located in the stripe

at the timestamp ti, we set the probability of staying in the

stripe in the next timestamp as

p =

∫ su

0

1

σ
√
2π

· e− x2

2σ2 dx (6)

The simplified probabilistic process for the next m steps is

shown in Figure 5. At timestamp ti, the user moves out of

the old safe region and the precise location is available. At

timestamp ti+1, the user has probability 1− p to move out

of the safe region and probability p to be within distance su

to the predicted location a1. The probability analysis in the

subsequent timestamps is similar to that in ti+1. Hence, the

probability to stay in the safe region in the m-th step is pm.

Figure 5. Probabilistic process of path predicting

Based on the probabilistic process, we start to estimate

Em and Ep for the new constructed stripe. At timestamp

ti, the user has probability 1 − p to deviate the path and

move out of the safe region. The estimated staying time is

T0 = (1 − p) s
u

vu
. At timestamp ti+1, the estimated staying

time is T1 = p(1 − p)( s
u

vu
+ Δt). At timestamp ti+2, the

estimated staying time is T2 = p2(1 − p)( s
u

vu
+ 2Δt). The

process repeats with Ti = pi(1 − p)( s
u

vu
+ iΔt). Finally, at

timestamp ti+m, we use Tm = ( s
u

vu
+mΔt)p

m to estimate

the elapsed time of reaching the m-th step and then leaving

the current safe region to trigger the next round of safe



region construction. By summing all the Ti up, we have

Em = T0 + T1 + T2 + . . .+ Tm

=
su

vu
+Δt(

m−1∑
i=1

ipi(1− p) +mpm)

=
su

vu
+Δt(p+ p2 + . . .+ pm−1 − (m− 1)pm +mpm)

=
su

vu
+

Δtp(1− pm)

1− p

The next probing request for user u occurs when the

minimum distance of a friend to the new constructed stripe

Su is smaller than the alert radius. If a friend’s current

location is available, we use o to denote the location and

its distance to Su is defined as

dw = d(o, Su) = min
1≤i≤m−1

d(o, aiai+1)− su (7)

where ai and ai+1 are two predicted locations for user u
and d(o, pipi+1) is the minimum distance from a point o to

a segment pipi+1. Otherwise, we use the distance between

two stripes to estimate Ep.

dw = min{ min
1≤i≤m

d(ai, Sw)− su, min
1≤j≤n

d(bj , Su)− sw}
(8)

where a1, a2, . . . , am are the predicted locations for Su and

b1, b2, . . . , bn are locations for Sw. Then, we estimate the

elapsed time Ep for the next probing request as

Ep = min
w∈M(u)

{dw − ru,w
vw

}

If we can find su such that Em = Ep, then we have

Ep > 0 and dw > ru,w for all the friends of u. In other

words, the minimum distance from u to w is larger than the

alert radius when they are in the stripe. Hence, the stripe is

a safe region.

E. Stripe Construction Algorithm

Although we have proposed a cost model to estimate

Em and Ep, we still face two challenges to construct a

new stripe for user u. First, for a given m, it is difficult

to solve the equation Em = Ep directly. Second, we

need to determine the number of subsequent timestamps for

trajectory prediction.

To solve the first issue, we leverage the properties that

Ep ≥ 0 and Ep decreases monotonically with su. We first

rewrite dw in Equations 7 and 8 in the form of y0 − su.

Then, we have

Ep = min
w∈M(u)

{y0 − su − ru,w
vw

} ≥ 0 (9)

Thus, min
w∈M(u)

{y0 − ru,w} is an upper bound value for su.

Our algorithm starts by setting su to the upper bound value

Algorithm 2: Stripe construction

1. m← �logp(pmin)�; E′ ← 0

2. for each friend w of user u do
3. for i = 1; ; i++ do
4. if d(ai, Sw) ≤ ru,w then
5. m← min{m, i}
6. break
7. for i = 1; i ≤ m; i++ do
8. su ← minw∈M(u){y0 − ru,w};min← 0;max← su

9. estimate Em and Ep

10. if Em ≤ Ep then
11. if Em > E′ then
12. E′ ← Em

13. m′ ← m; su
′ ← su

14. else
15. while |Em − Ep| ≥ ε do
16. if Em ≤ Ep then
17. su ← min+max

2 ;max← su

18. else
19. su ← min+max

2 ;min← su

20. estimate Em and Ep

21. if Em > E′ then
22. E′ ← Em

23. m′ ← m; su
′ ← su

24. return (m′, su
′
)

and estimate Em and Ep. If Em ≤ Ep, the algorithm can

terminate because if we further decrease su, the gap between

Em and Ep becomes larger. If Em > Ep, we use binary

search by setting su = su

2 and compare the new estimated

E′m and E′p. If E′m ≤ E′p, we set su = 3su

4 . Otherwise,

su = su

4 . The process repeats and the algorithm terminates

when |E′m − E′p| < ε.
To solve the second issue, our strategy is to first determine

an upper bound value for m and iteratively calculate the

best su for each possible value of m. The one with the

maximum Em or Ep is selected. For example, Figure 6

illustrates the construction of Su based on the sequence of

predicted locations a1, a2, . . . , a7. Sw is an existing stripe

of a friend w. In this example, m = 6 is the upper bound

value because the minimum distance from a7 is smaller

than the alert radius. If there is no such upper bound,

we select the maximum m such that pm ≥ pmin, where

pmin is set to a small probability. In other words, as m
increases, the prediction precision at the m-th step drops and

pmin indicates the threshold of tolerance of such prediction

accuracy. When the upper bound is determined, we starts

from m = 1 and iteratively find the maximum value of

Em (or Ep) for each option value of m. The pair (m′,
su

′
) that derives the maximum Em is selected and returned.

The details of the stripe construction algorithm are shown

in Algorithm 2.

VI. EXPERIMENTAL STUDY

A. Datasets

In the experimental study, we use four real datasets to

evaluate the performance of our predictive safe region.

• GeoLife. The dataset essentially keeps all the travel

records of 182 users for a period of over three



Figure 6. An example to illustrate the upper bound value of m.

years, including multiple kinds of transportation modes

(walking, driving and taking public transportation).

• Bejing Taxi. It contains GPS trajectories from 33, 000
taxis in Beijing over 3 months. The average sampling

interval of the dataset is 3.1 minutes per point.

• Singapore Taxi [16]. It contains trajectories from

13, 200 taxies in Singapore over one week. Each taxi

continuously reports its locations at a frequency of 20-

80 seconds.

• Truck [12]: The dataset is the GPS trajectories col-

lected by trucks equipped with GPS sensors in China

during a period from Aug. 2015 to Oct. 2015. The

sampling rate varied from 1s to 60s.

To simulate moving users connected in an interest graph,

we interpolate the trajectories with 5 seconds as a step and

pick 10, 000 trajectories as moving users from each dataset.

We follow [19] to randomly generate the interest graph in a

synthetic way. There is a parameter F to control the density

of the graph and each user has an average of F friends.

B. Comparison of Prediction Models

The training dataset contains 1, 600 synchronized times-

tamps of 10K moving objects. The codes for RMF and R2-

D2 are provided by the authors and we implement HMM

model and Kalman filter by our own. To train HMM models,

we split the map into 100 × 100 grid cells and treat each

cell as a state. The number of hidden variables is set to 10.

The process noise and measurement noise parameters for the

Kalman filter are also tuned for the best performance.

In the following, we use average Euclidean distance (in

the unit of meters) to measure the error of a trajectory

prediction model. We also report the prediction time as

this step is a frequent operator in proximity detection. Each

time we re-construct the safe region, we need to call the

prediction function to obtain a sequence of future locations.

We fix the input length as 10 and vary the output length to

10, 20 and 30. In other words, given a recent history of 10
points, our goal is to predict the locations in the subsequent

10, 20 and 30 steps, respectively.

The prediction errors of four models are depicted in

Figure 7. As expected, R2-D2 works much better than RMF

in most of the datasets because R2-D2 finds moving objects

with similar trajectories in the historical data and leverage

their future locations to facilitate prediction, whereas RMF

simply attempts to adjust the parameters to fit the recent

curve of a single trajectory. In the Truck dataset, their

prediction errors are comparable and higher than other

datasets. The reason could be that trucks are normally

moving in high ways crossing cities or even provinces and

there may be not enough historical data for R2-D2 to learn

a reliable probabilistic model. HMM and Kalman filter are

two classical models to process time series data. The states

in HMM are discrete and its probabilistic model learns the

transition probabilities between two states. Kalman filter

uses continuous states, but with the Gaussian distribution

assumption. The results show that Kalman filter achieves

smaller errors than HMM, implying that its Gaussian

assumption is reasonable in the application of trajectory

prediction.
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Figure 7. Prediction error.

C. Comparison Methods for Proximity Detection
The methods to be evaluated for continuous proximity

detection include:

• Naive, which updates the locations of all the users at

each timestamp. It incurs no probing cost.

• Static [3], which constructs static safe regions for the

moving users.

• FMD [19], which assumes that users are moving in

constant direction and speed. It maintains a mobile

region for each user as the safe region.

• CMD [19], which is an extension of FMD by adjusting

the radius of mobile region dynamically. If too many

probing requests have occurred in a recent period, the

radius would be adjusted smaller. If a moving object

frequently report their locations, a larger radius is

desired.

• Stripe+RMF, which constructs a predictive stripe as

the safe region and uses RMF [15] as the underlying

prediction model.



• Stripe+R2-D2 which uses R2-D2 [23] for predictive

safe region construction.

• Stripe+HMM which uses HMM [13] for predictive

safe region construction.

• Stripe+KF which uses Kalman filter for predictive safe

region construction.

D. Performance Evaluation for Proximity Detection

The parameter settings are shown in Table II with the

default values in bold. We will evaluate the communication

cost of the six methods w.r.t to varying number of friends

F (30 by default), number of steps (or timestamps) S (900
by default), moving speed V (8 steps per epoch by default)

and alert radius r (6km by default). All the methods are

implemented in C++ and run on a CentOS server (Intel i7-

3820 3.6GHz CPU with 8 cores and 64GB RAM).

Table II
EXPERIMENT PARAMETERS.

Number of moving objects N 10K, 100K, 200K, 300K, 400K, 500K

Average number of friends F 10, 20, 30, 40, 50

Number of steps S 300, 600, 900, 1200, 1500

Moving speed V (steps per epoch) 2, 4, 6, 8, 10, 12, 14, 16

Alert radius r (km) 2, 3, 4, 5, 6

1) Increasing Number of Moving Objects N : Our first

proximity experiment examines the I/O and CPU cost with

increasing number of moving objects from the Truck dataset.

For the Stripe method, we report the performance using

Kalman Filter as the prediction model. All the results are

shown in Figure 8. As to the CPU cost, the overhead at the

client side is negligible because the sampled GPS data only

needs to compare with the preserved safe region and check if

the point is located within the region. This leads us to focus

on the computation cost in the server side as the server needs

to monitor a large number of moving objects and check the

proximity criterion. The I/O cost of Naive method grows

linearly with the number of moving objects and incurs the

much higher CPU cost at the server side. The safe region

based approaches can reduce both communication I/O and

CPU cost at the same time. Among these methods, the static

safe region approach performs the worst. When there are

friends nearby and the objects are moving at a relatively

high speed, it is easy to move out of the safe region and

requires to construct a new region. Compared to FMD and

CMD, our Stripe+KF reduces the amount of communication

I/O significantly. We also observed that the CPU cost of

Stripe+KF at the server side is higher than that of FMD

and CMD. The reason is that the location prediction model

consumes a considerable amount of computing resources.

2) Increasing Number of Friends F : In this experiment,

we increase the average number of friends in the interest

graph and report the number of communication I/O in

Figure 9. Based on the results, we have the following

observations. 1) The number of communication I/O among
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Figure 8. Performance with increasing number of moving objects.
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Figure 9. Increasing average number of friends.

the six methods exhibits a considerable increasing trend as

F grows. With more neighbours in the interest network,

the probability of two friends in proximity becomes much

higher, triggering more probing requests from the server.

2) CMD is superior to FMD in all the datasets as it

utilizes a cost model to dynamically adjust the radius of

safe region. Thus, we consider CMD as state-of-the-art.

3) The performance of proximity detection is positively

related to the accuracy of the underlying prediction model.

The more accurate the underlying prediction model is, the

less communication I/O is incurred. Since RMF model

has the highest prediction error, Stripe+RMF obtains the

worst performance. Analogously, Kalman filter is the most

accurate prediction model in our experiments and Stripe+KF

incurs the minimum amount of communication I/O. In

GeoLife, the communication I/O of CMD is 2-5 times

higher than that of Stripe+KF. In Truck, this number is 6-12

times higher. These results verify the effectiveness of our

predictive safe region strategy and the holistic cost model.

3) Increasing Number of Steps S: Figure 10 illustrates

the performance w.r.t. increasing number of steps from

300 to 1500. The patterns are similar to those in the

previous experiment. We can see that the total number

of communication I/O grows linearly with the number of

steps. In the two Taxi datasets, CMD performs better than

Stripe+RMF because the taxies are running within a city at



high speed and it is easy for them to move out of the stripe

region if the prediction is not accurate. On the other hand, if

the prediction error is small enough, the performance of our

proposed predictive stripe is considerably better than CMD.
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Figure 10. Increasing average number of steps.

4) Increasing Moving Speed V : The performance is also

related to the user moving speed. As shown in Figure 11,

when the speed grows from 2 steps/epoch to 16 steps/epoch,

the number of communication of FMD and CMD increases

steadily. It is interesting to observe that the communication

I/O of our stripe-based methods only demonstrates a slight

increasing pattern in the Truck dataset. Our explanation is

that the trucks often run on straight high ways and the

derived predictive safe region is likely to enclose the future

locations of the trucks. In addition, the trucks are more

sparsely distributed in the two-dimensional space, which

incur less probing cost.
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Figure 11. Increasing moving speed.

5) Increasing Alert Radius r: In Figure 12, most of the

algorithms degrade slowly as r increases. On one hand,

a large alert radius increases the probability of sending a

probing request and thus increases the communication I/O.

On the other hand, a large radius renders two friends close

to each other more likely to be located in the match region.

As long as they are in the match region, no more I/O occurs

and they will not be considered for each other’s safe region

construction. Thus, the effect of alert radius depends on the

density and motion patterns of moving objects. The two Taxi

datasets are more sensitive to r than the remaining two.
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Figure 12. Increasing alert radius.

E. Dynamic Graph Update

In the last experiment, we consider the dynamic scenario

with fluctuating user participation during a long-term oper-

ation. This renders the interest graph to update on the fly.

For instance, users in MMOGs would require a continuous

update of the graph since items are acquired and disposed

of. The goal is the experiment is to examine how the rate of

such a change could affect the communicational overhead.

Given an insertion of an edge (or a pair of new matching

friends) in the interest graph, we first calculate the minimum

distance of their current safe region. If the distance is

larger than the alerting radius, no operation is required.

Otherwise, the server sends a probing request to obtain the

exact locations in case these two users are matching at this

epoch. The safe region of these two probed users may be

updated as well. The edge deletion of interest graph is easier

to handle. We simply need to update the interest graph and

retain their safe regions unchanged. The safe region will be

re-constructed in the future epoch when the user moves out

of it, but based on the new interest graph. There would be

no probing between the deleted pair of friends. Thus, in our

experimental setup, we only consider the insertion operator

in the interest graph and simulate the dynamic graph update

for 100 epochs. In each epoch, we add a number of E edges,
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Figure 13. Dynamic graph update.

with E increasing from 0 to 200. The results on GeoLife and

Singapore Taxi in Figure 13 show that the algorithms scale

well with continuous edge insertion in an evolving interest

graph. Thus, dynamic update in the interest graph will not

become a barrier for the continuous proximity detection.

VII. CONCLUSION

In this paper, we studied the problem of continuous

proximity detection and construct the safe region from a

new perspective. We proposed to use stripe as predictive

safe region to capture the dynamic and complex user

motion patterns. To guide the safe region construction, we

proposed a holistic cost model with minimized expected

communication I/O. We conducted experiments on four real

datasets covering the motion patterns of driving vehicles

and walking people. Experimental results showed that

our predictive safe region is superior over state-of-the-art

solution. It can significantly reduce the communication I/O

by more than 30% in the default parameter settings.
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