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Abstract—Due to the significant reduction in computational
cost and storage, hashing techniques have gained increasing
interests in facilitating large-scale cross-view retrieval tasks. Most
cross-view hashing methods are developed by assuming that data
from different views are well paired, e.g., text-image pairs. In
real-world applications, however, this fully-paired multiview set-
ting may not be practical. The more practical yet challenging
semi-paired cross-view retrieval problem, where pairwise corre-
spondences are only partially provided, has less been studied.
In this paper, we propose an unsupervised hashing method for
semi-paired cross-view retrieval, dubbed semi-paired discrete
hashing (SPDH). In specific, SPDH explores the underlying struc-
ture of the constructed common latent subspace, where both
paired and unpaired samples are well aligned. To effectively
preserve the similarities of semi-paired data in the latent sub-
space, we construct the cross-view similarity graph with the help
of anchor data pairs. SPDH jointly learns the latent features
and hash codes with a factorization-based coding scheme. For
the formulated objective function, we devise an efficient alternat-
ing optimization algorithm, where the key binary code learning
problem is solved in a bit-by-bit manner with each bit generated
with a closed-form solution. The proposed method is extensively
evaluated on four benchmark datasets with both fully-paired and
semi-paired settings and the results demonstrate the superiority
of SPDH over several other state-of-the-art methods in term of
both accuracy and scalability.
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I. INTRODUCTION

RECENT years have witnessed the explosive growth of
the multimedia data, which brings great challenges to

information search and retrieval. Hashing [1] has attracted con-
siderable interests for its great gains of both storage and com-
putation in massive multimedia data. It has been widely used
in approximate nearest neighbor search [1], image retrieval [2],
image processing [3], [4], and so on. The basic idea of hash-
ing is to learn a set of short binary codes for high-dimensional
data while preserving similarity structure in the original space.
Until now many hashing methods [1], [2], [5]–[12] have been
proposed. Nevertheless, these hashing methods are single-view
approaches, which focus on learning binary codes from data
with only single view.

In many real-world applications, we often meet such a case
that one object can be represented by multiple kinds of fea-
tures [13], [14]. For example, each webpage can be jointly
represented with both text, image, and hyper-links. This kind
of data is referred as multiview data1 [13]. Existing hash-
ing methods learning from multiview data can be mainly
divided into two categories: 1) multiview hashing (MVH)
and 2) cross-view hashing (CVH). By leveraging multiple
views, MVH [17]–[19] aims to learn better codes than single-
view hashing, but requires that all views should be available
in advance. Different from the purpose of MVH, CVH is
proposed to support cross-view retrieval [20], where a query
of one view can search for the relevant results of another view.
For instance, one might need to find images on the Web that
best illustrate given texts, or find texts that best match given
images. Consequently, CVH is of great practical demand and
interest to many applications.

Recently, some useful attempts [15], [16], [21]–[31] have
been made toward effective CVH, which exploits correlations
and similarity structures across multiple views. Cross-modality
similarity sensitive hashing (CMSSH) [15] is proposed to
learn hash functions among different views. The work
in [21] extends spectral hashing (SH) to multiview fields.

1Here, “view” can be replaced as other terms, such as “feature,” “modal,”
and “modality” [13], [15], [16].
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Fig. 1. Illustration of the proposed SPDH. SPDH first linearly maps semi-paired data into a common latent subspace, where both the paired and unpaired
samples can be aligned well. Similarity structure of the common subspace is explored via the proposed effective cross-view similarity graph. A factorization-
based discrete hash coding scheme is further presented to bridge the common subspace and Hamming space.

Both intermedia hashing (IMH) [23] and linear cross-
modal hashing (LCMH) [16] introduce intraview similar-
ity preservation and interview consistency to discover a
compact Hamming space, and solve hash functions by
eigenvalue decomposition. Collective matrix factorization
hashing (CMFH) [24] learns unified binary codes by collective
matrix factorization with latent factor model, which can sup-
port cross-view retrieval. In [25], a supervised CVH method,
called semantic correlation maximization (SCM), is proposed
to seamlessly integrate semantic labels into hash learning.
Quantized correlation hashing (QCH) [29] is proposed to con-
sider both quantization loss and relations between views in a
unified learning process.

While showing promising performances, most existing CVH
methods can only handle the fully-paired data, by requiring
that all the objects are fully paired or have the one-to-one
correspondence among different views. Nevertheless, such
requirement may not hold anymore, when some views of
objects become missing, which is common in the practical
applications [32]–[35]. For example, in webpage search, many
webpages may not contain any linkage information. Also, in
text image retrieval, as shown in Fig. 1, some images or text
descriptions do not exist, then the pairwise correspondences
between them cannot be established. In practical, we are often
given such kind of multiview data, where only partial objects
are paired, and the others are unpaired. In this paper, such
data is referred as semi-paired data,2 and cross-view retrieval
on such data is referred as semi-paired cross-view retrieval.
Generally speaking, semi-paired cross-view retrieval is more
challenging than the conventional one, because the cross-view
prior information among the semi-paired data is limited. This
limitation makes it very necessary to develop hashing meth-
ods that can work with semi-paired data. To our knowledge,
only two recently proposed methods, i.e., IMH [23] and partial
multimodal hashing (PM2H) [27] have been formally for-
mulated to perform the semi-paired cross-view retrieval in

2In some literature, they are also named as weakly-paired data [32] or
partially-paired data [27], [33].

hashing research. Both methods consider the within-view sim-
ilarity structure in each view and the cross-view consistency
via the partially given correspondences. However, cross-view
similarities between unpaired data cannot been fully explored
in these two methods, as the graphs in their methods are
defined within each view. Meanwhile, both of them learn
the continuous feature and binary codes in two independent
stages; the connection between two stages is lost, which may
lead to the nonoptimal hash codes. In addition, their training
time complexities are around quadric or cubic to the size of
dataset, which are relatively high in the large-scale applica-
tions. Generally speaking, it still remains an open problem
how to learn good hash codes on the large scale semi-paired
data.

In this paper, we propose an unsupervised hashing method
for the semi-paired cross-view retrieval problem, thus termed
semi-paired discrete hashing (SPDH). SPDH aims to effi-
ciently generate latent hash codes while preserving the intrin-
sic similarities of semi-paired data. The proposed SPDH is
outlined in Fig. 1. We summarize the main contributions of
this paper as follows.

1) SPDH focuses on the semi-paired cross-view retrieval,
where partial pairwise correspondences are provided
from training data in the unsupervised setting. This chal-
lenging problem has been less considered in the CVH
research.

2) SPDH explores the underlying structure of the learned
common latent subspace, where both paired and
unpaired samples can be well aligned. In addition,
an effective similarity graph is efficiently constructed
in order to preserve the similarities of semi-paired data
in the latent common space.

3) The latent features are learned with hash codes via a
factorization-based binary coding scheme. Considering
the discrete nature of hashing, the hash codes are
optimized bit by bit with each hash bit generated by an
analytical solution. The training complexity of SPDH is
linear with size of the dataset. Hence, SPDH is scalable
and efficient for the large-scale applications.
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4) We perform extensive evaluation of the proposed
method on four benchmark datasets. The results show
our approach outperforms several other state-of-the-
art methods with both fully-paired and semi-paired
settings.

The remainder of this paper is organized as follows. We
first briefly review related works in Section II. The details of
the proposed method are presented in Section III. Extensive
experimental evaluation are given in Section IV. Finally, we
draw conclusions in Section V.

II. RELATED WORK

In this section, we preliminarily review several topics related
to this paper.

A. Hashing on Single-View Data

Most existing hashing methods utilize single-view data to
generate hash codes. Accordingly, we name this category
as single-view hashing methods, which can also be broadly
divided into two categories: 1) data-independent methods and
2) data-dependent methods. The data-independent hashing
methods mainly include locality sensitive hashing [5] and its
extensions [10], [36], [37].

Later considerable attentions have been paid to data-
dependent hashing methods, which apply some machine learn-
ing techniques to generate more compact data-related hash
functions. One of the earliest work in this category is SH [2],
which utilizes the distribution of data and turns to be eigen-
decomposition problem of a graph Laplacian matrix [38]. Later
anchor graph hashing [6] is proposed to adopt anchor graph
for hashing learning, and can be more efficient than SH.
To ease the quantization loss in the binarization process,
Gong et al. [7] proposed iterative quantization (ITQ), which
aims to find an optimal rotation matrix such that the differ-
ence between binary codes and original data is minimized.
Besides, some other variants in this category can be found
in [1], [8], [9], [11], [12], and [39]–[43].

B. Hashing on Multiview Data

Recent years more and more multiview data [13], [14] have
been available in real applications, consequently hashing on
the multiview data has received lots of attentions.

One category is MVH [17]–[19], [44]–[46], which fuses
multiple sources from the same objects to get better binary
codes than the single-view methods. Multiple feature hash-
ing [17] preserves the local structure of each view and globally
considers the alignments of all views to learn a group of
hash functions. Multiple feature kernel hashing [45] learns
hash functions by preserving certain similarities with linearly
combined multiple kernels corresponding to different features.
Kim et al. [18] proposed multiview SH, which computes
the α-averaged similarity matrix from all views, and adopts
the sequential learning approach to obtain the hash function.
Recently, based on regularized kernel non-negative matrix fac-
torization, multiview alignment hashing [19] is proposed to

seek a matrix factorization to effectively fuse the multiple
views.

Besides, another category is CVH, which supports the cross-
view retrieval. The proposed method belongs to this category.
Until now many CVH methods [15], [16], [21]–[31] have been
proposed. Bronstein et al. [15] proposed the cross-modality
search hashing (CMSSH), which learns hash functions among
different views. Kumar and Udupa [21] extended SH to
multiview fields. LCMH [16] introduces intraview similarity
preservation and interview consistency to discover a com-
pact Hamming space, and solves hash functions by eigenvalue
decomposition. CMFH [24] learns unified binary codes by col-
lective matrix factorization with latent factor model, which can
support cross-view retrieval. Zhang and Li [25] proposed a
supervised CVH method, called SCM, to seamlessly integrate
semantic labels into hash learning. QCH [29] is proposed to
consider both quantization loss and relations between views
in a unified learning process.

C. Learning on Semi-Paired Data

In real-world applications, semi-paired data is prevalent due
to the fact that some data in certain views are often missing.
One the other hand, manually pairing the unpaired data is dif-
ficult, because it often requires the expertise of some specific
domain. Hence, it is significant to directly learn on semi-paired
data. Note that most multiview learning methods [13], e.g.,
canonical correlation analysis (CCA) [47] and partial least
squares [48] assume all data are fully paired, and they fail
to directly deal with semi-paired data.

Until now a few multiview learning methods [32]–[35]
have been proposed to perform various tasks on semi-paired
data. For example, Li et al. [33] first proposed a method
in multiview clustering, named partial multiview clustering
to perform clustering tasks on semi-paired data. The clus-
tering experiments on two-view data demonstrate its effec-
tiveness. To break the full pairwise requirement of CCA,
Rasiwasia et al. [34] proposed cluster-CCA to perform joint
dimensionality reduction on the semi-paired data. The corre-
spondences between the sets are defined by class labels, but
label information may not be available in the real-world appli-
cations. Recently, local group-based consistent feature learning
method (LGCFL) [35] is proposed to do cross-view retrieval
on semi-paired data. In essence, LGCFL is a supervised
learning method.

In hashing area, two pioneering works have focused on
cross-view retrieval on semi-paired data. One is IMH [23].
IMH constructs the intraview similarity preservation term in
each view, and utilizes the partial available correspondence
to align two views. Then it is formulated as an eigen-
value decomposition problem via spectral relaxation. The sign
function is finally adopted to binarize the continuous fea-
tures into binary codes. The other is the recently proposed
PM2H [27]. Similarly, PM2H ensures the data consistency
among different modalities and preserves data similarity within
the same modality through graph Laplacian. Hash codes
are finally obtained via the additional orthogonal rotation
using ITQ.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

TABLE I
IMPORTANT NOTATIONS USED IN THIS PAPER

III. SEMI-PAIRED DISCRETE HASHING

A. Problem Statement

We present the problem statement of the semi-paired
cross-view retrieval. The database consists of samples
from one view while the query consists of samples
from a different view. For simplicity, we hereafter
consider only two views (e.g., text view and image
view). Specifically, suppose we have two different views
X(1) = [x(1)

1 , x(1)
2 , . . . , x(1)

n1−n0
, x(1)

n1−n0+1, . . . , x(1)
n1 ], X(2) =

[x(2)
1 , x(2)

2 , . . . , x(2)
n0 , x(2)

n0+1, . . . , x(2)
n2 ], where x(1) ∈ R

d1 ,
x(2) ∈ R

d2 (usually d1 �= d2), di and ni (i = 1, 2) are the
dimensionality and the number of samples in the ith view,
respectively. Without loss of generality, we assume the last n0
samples in the first view and the first n0 samples in the second
view come from the same n0 objects, that is, {x(1)

n1−n0+i, x(2)
i }n0

i=1
are pairs, where n0 is the number of pairs, while rest sam-
ples lack such one-to-one correspondence. We denote n as the
number of total objects, and n = n1 + n2 − n0. Besides, we
further assume samples in each view are zero-centered, i.e.,∑n1

i=1 x(1)
i = 0 and

∑n2
i=1 x(2)

i = 0.
The goal of SPDH is to learn the view-specific hash

functions to map samples of different views into a com-
mon Hamming space, where similarities of semi-paired data
should be preserved. The important notations in this paper are
summarized in Table I.

B. Proposed Formulation

1) Common Latent Subspace Learning: In multiview learn-
ing [13], it is critical to analyze the relationships between
views. It is commonly known that if data described in dif-
ferent views are related to similar topics, they are expected
to share a certain common subspace [20]. Specifically, in our
problem, we assume that there exists the view-specific projec-
tion matrix W(i) for the ith view (i = 1, 2), by which X(i) can
be mapped into such common subspace. To achieve this goal,
we optimize the following problem:

min
W(1),Y(1)

∥
∥
∥W(1)TX(1) − Y(1)

∥
∥
∥

2

F

min
W(2),Y(2)

∥
∥
∥W(2)TX(2) − Y(2)

∥
∥
∥

2

F
(1)

Fig. 2. Illustration of the proposed cross-view similarity graph construction.
Anchor pairs, i.e., {μ(1)

k ,μ
(2)
k }m

k=1 are randomly selected from paired samples

from different views. The cross-view similarity Sij between x(1)
i and x(2)

j
can be inferred according to their within-view similarities with the anchor
pairs. If two samples share more co-occurring neighborhood anchor pairs, the
similarity between them should be larger.

where W(1) ∈ R
d1×d and W(2) ∈ R

d2×d are two view-specific
projection matrices, Y(1) = [Ȳ(1), Ỹ] ∈ R

d×n1 and Y(2) =
[Ỹ, Ȳ(2)] ∈ R

d×n2 are the generated feature matrices of two
views, Ỹ ∈ R

d×n0 is the shared feature matrix of the paired
samples, and Ȳ(i) ∈ R

d×(ni−n0) is the feature matrix of the
unpaired samples from the ith view, d is the dimensionality of
the common subspace.

2) Similarity Preservation: Similarity preserva-
tion [1], [2], [6], [15] is crucial for hashing to achieve
good performance. Therefore, similarity (local) structure of
the features in the common subspace should be preserved as
much as possible.

It is very challenging to directly analyze the similari-
ties among semi-paired data, as they belong to different
views and partial pairwise information is also not avail-
able. The conventional graph construction approaches, e.g.,
k-NN approach [2], [49] cannot be directly employed in our
problem. In this paper, inspired with the idea of anchor
graph [6], we design a simple yet effective cross-view graph
construction approach to uncover similarities among the semi-
paired data.

The proposed cross-view graph construction approach is
illustrated in Fig. 2. The main idea is utilizing the within-
view similarity to measure the cross-view similarity with the
help of anchor data pairs. Specifically, we first randomly select
m pairs of paired samples as anchor data pairs, denoted as
{μ(1)

k ,μ
(2)
k }m

k=1. Then cross-view similarity between x(1)
i and

x(2)
j can be calculated as

Sij =
m∑

k=1

Z(1)
ik × Z(2)

jk (2)

where Z(1)
ik denotes the similarity between x(1)

i and μ
(1)
k , and

Z(2)
jk denotes the similarity between x(2)

j and μ
(2)
k , both of

which can be computed similarly with that in anchor graph [6].
The physical meaning of (2) is obvious: if x(1)

i and x(2)
j share

more co-occurring neighborhood anchor data pairs, Sij should
be larger. For example, x(1)

1 and x(2)
1 in Fig. 2 share two
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common neighborhood anchor data pairs, i.e., {μ(1)
k ,μ

(2)
k }2

k=1,
while x(1)

1 and x(2)
3 share no common neighborhood anchor

data pairs, then we infer that x(1)
1 will be more similar to x(2)

1
than x(2)

3 .
To this end, the similarity matrix S ∈ R

n×n among the
semi-paired data can be constructed as

S = Z�−1ZT (3)

where Z = [Z̄(1); Z̃; Z̄(2)], Z̄(i) ∈ R
(ni−n0)×m is a simi-

larity matrix defined in the ith view (i = 1, 2), measur-
ing the similarities between unpaired samples and anchors,
Z̃ ∈ R

n0×m denotes the similarities between paired sam-
ples and anchors, which can be computed in either view.
� = diag(ZT1) ∈ R

m×m is used for normalizing
each row.

After obtaining S, we achieve similarity preservation by
minimizing the following problem:

min
Y

n∑

i=1

n∑

j=1

Sij
∥
∥yi − yj

∥
∥2 = Tr

(
YLYT)

(4)

where L = I − S ∈ R
n×n is the graph Laplcian [2], and

Y = [Ȳ(1), Ỹ, Ȳ(2)] ∈ R
d×n is the latent features of all the

samples in the common subspace.
3) Hash Coding Scheme: We next consider learning the

target hash codes. Some existing hashing methods directly
use the simple sign function for binarization, and others
employ some learning-based binarization schemes, e.g., ITQ.
In this paper, we propose to utilize matrix factorization tech-
nique [50] to establish the hash coding scheme, which learns
binary latent factors to well reconstruct Y under a certain
basis set. Specifically, we have the following optimization
problem:

min
U,B

‖Y − UB‖2
F

s.t. B ∈ {−1, 1}c×n (5)

where U ∈ R
d×c is the basis matrix, and B is the binary

code matrix, c is the code length. U can be regarded as a
set of certain semantic concepts, and Y can be regarded as the
linear combinations of these concepts under the binary discrete
constraint.

4) Overall Objective Function: Due to the difficulty of
directly learning discrete binary codes, one conventional way
is to bypass the discrete optimization problem by some certain
relaxation strategy, which, however, separates the binary code
learning into two mutually-independent stages, i.e., learning
continuous representations and transforming into binary codes
via some binarization methods. Typically, such optimization
scheme ignores the correlation of the above two stages, which
may severely limit the representative power of the generated
binary codes.

To cope with the above problem, we propose to jointly
learn latent feature representation and consistent hash codes
within one framework. By summarizing the above three
parts, i.e., (1), (4), and (5), we finally formulate our joint

optimization problem as follows:

min
W(i),θ(i),

Y,U,B

2∑

i=1

θ(i)
(∥

∥
∥W(i)TX(i) − Y(i)

∥
∥
∥

2

F

)

+ αTr
(
YLYT) + γ ‖Y − UB‖2

F

s.t. YYT = I, and B ∈ {−1, 1}c×n

and
2∑

i=1

θ(i) = 1, θ(i) > 0, i = 1, 2 (6)

where θ(i) is a variable for weighting the relative impor-
tance of the ith view in the learning process, α and γ are
two non-negative tradeoff parameters, weighting the relative
importances of the similarity preservation term and the hash
code reconstruction error term. We further impose the orthogo-
nality constraint on Y to make the latent features uncorrelated.
Note that without this orthogonality constraint, the proposed
model always has a trivial solution, that is, W(i), Y, U all equal
to 0, and B is arbitrary, which is useless in our application.

C. Optimization Algorithm

Directly minimizing the objective function in (6) is
intractable as it is a nonconvex optimization problem.
Meanwhile, the discrete and orthogonal constraints makes the
problem more difficult to solve. However, we will show that
it is tractable to solve the problem with respect to one vari-
able while keeping other variables fixed. In the following, we
describe an iterative algorithm to update these variables until
convergence.

1) Optimization on W(i): By dropping some terms irrele-
vant to W(i) (i = 1, 2), we have

min
W(i)

∥
∥
∥W(i)TX(i) − Y(i)

∥
∥
∥

2

F
. (7)

Let the derivative of (7) with respect to W(i) equal to 0, then,
we obtain

W(i) =
(

X(i)X(i)T + εI
)−1

X(i)Y(i)T (8)

where I ∈ R
di×di is an identity matrix, which is used to avoid

the overfitting of W(i), ε is a small non-negative parameter,
we simply set ε = 0.001.

2) Optimization on Y: For purpose of clear presen-
tation, we first define two view-specific element selec-
tion matrix Q(1) = [1n1×n1 , 0n1×(n−n1)]

T , and Q(2) =
[0n2×(n−n2), 1n2×n2 ]T . With the help of Q(i) (i = 1, 2), we
can easily use Y to represent Y(i), i.e., Y(i) = YQ(i).

Putting Q(1) and Q(2) into (6), we have

min
Y

2∑

i=1

θ(i)
(∥

∥
∥W(i)TX(i) − YQ(i)

∥
∥
∥

2

F

)

+ αTr
(
YLYT) + γ ‖Y − UB‖2

F

s.t. YYT = I. (9)

We can further rewrite (9) in a more compact form

min
Y

‖F − YQ‖2
F + αTr

(
YLYT)

s.t. YYT = I (10)
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Algorithm 1 Curvilinear Search Algorithm Based on Cayley
Transformation
Input: initial point Y(0) ∈ Md

n
3, matrix F, Q, graph

Laplacian L.
Output: Y(k).

1: Initialize k = 0, ε > 0, and 0 < ρ1 < ρ2 < 1.
2: repeat
3: Compute the gradient G according to (11);
4: Generate the skew-symmetric matrix A = GTY −

YTG;
5: Compute the step size τk, that satisfies the Armijo-

Wolfe conditions [51] via the line search along the path
Hk(τ ) defined by (12);

6: Set Y(k+1) = H(τk);
7: Set k = k + 1;
8: until convergence

where F = [
√

θ(1)W(1)TX(1),
√

θ(2)W(2)TX(2),
√

γ UB], Q =
[
√

θ(1)Q(1),
√

θ(2)Q(2),
√

γ I], and I ∈ R
n×n is an identity

matrix. Basically, it is difficult to find a global solution in (10)
as it is a nonconvex minimization problem with the orthogonal
constraint. In this paper, we use a gradient descent optimiza-
tion procedure [52] with curvilinear search for a local optimal
solution.

We first denote G as the gradient of (9) with respect to Y,
which can be computed as follows:

G = 2(YQ − F)QT + 2YL. (11)

We then further define the skew-symmetric matrix A = GTY−
YTG. The new trial point is determined by Crank–Nicolson-
like scheme

H(τ ) = Y − τ

2
AT(Y + H(τ )) (12)

where τ is the step size. From (12), H(τ ) is given in the
following closed form:

H(τ ) = YM and M =
(

I − τ

2
AT

)(
I + τ

2
AT

)−1
. (13)

Equation (13) is referred as the Cayley transformation.
The iterations will end when τ satisfies the Armijo–Wolfe
conditions [51]. In practical, it can further accelerated by
Barzukau–Borwein step size as in [52]. The details of the
curvilinear search algorithm for this subproblem are shown
in Algorithm 1.

3) Optimization on U: Typically the subproblem for the
basis matrix U, i.e., (5) is a least square minimization problem.
By setting the derivative with respect to U to zero, we have a
closed-form solution

U = YBT(
BBT + εI

)−1
(14)

where a small diagonal matrix εI ∈ R
c×c is added as the

regularization to avoid overfitting.

3Md
n represents a feasible set, which is defined as Md

n = {Y ∈
R

n×d| YT Y = I}.

4) Optimization on B: As we see in (5), it is an NP-hard
problem due to the discrete constraint on B. Most afore-
mentioned methods chose to first solve a relaxed problem
through discarding the discrete constraints, and then thresh-
old (or quantize) the solved continuous solution to achieve the
approximate binary solution. Unfortunately, such an approx-
imate solution is typically of low quality and often makes
the resulting hash functions less effective possibly due to the
accumulated quantization error. Fortunately, we next show the
formulated binary code learning problem here, can be solved in
a discrete optimization manner without continuous relaxation.

By dropping some terms irrelevant to B, we can first
transform (5) into the following form:

min
B

− 2Tr
(
YTUB

) + ‖UB‖2
F

s.t. B ∈ {−1, 1}c×n. (15)

Similar to the recent advance in binary optimization [12],
we propose to learn the hash codes B by the discrete cyclic
coordinate descent method. In other words, we learn B bit by
bit, and each bit corresponds to one row of B.

Let bT ∈ {−1, 1}1×n denote the ith row of B, and
B̄ ∈ {−1, 1}(c−1)×n denote all other rows in B excluding bT .
Similarly, let u ∈ R

d×1 denote the ith column of U, and
Ū ∈ R

d×(c−1) denote all other columns in U excluding u.
Then, we can obtain

Tr
(
YTUB

) = Tr
(
YT(

ubT + ŪB̄
))

= Tr
(
YTubT) + const. (16)

Similarly

‖UB‖2
F = ∥

∥ubT + ŪB̄
∥
∥2

F

= ‖buT‖2
F + 2Tr

(
buTŪB̄

) + ∥
∥ŪB̄

∥
∥2

F

= 2Tr
(
buT ŪB̄

) + const. (17)

Here, ‖buT‖2
F = Tr(buTubT) = nuTu = const.

Substitute (16) and (17) into (15), and we obtain the
following optimization problem:

min
b

(
B̄TŪTu − YTu

)T
b

s.t. b ∈ {−1, 1}n×1. (18)

This problem has a closed-form solution

b = sign
((

Y − ŪB̄
)T

u
)

(19)

where sign(·) is the sign function.
5) Optimization on θ(i): Although our model considers two

views, here, we directly focus on solving the optimization
problem for arbitrary M (M ≥ 2) views. By discarding some
terms irrelevant to θ(i), we have

min
θ(i)

M∑

i=1

θ(i)π(i) + λ‖�‖2
F

s.t.
M∑

i=1

θ(i) = 1, θ(i) > 0, i = 1, . . . , M (20)
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where π(i) = ‖W(i)TX(i) − Y(i)‖2
F , � =

[θ(1), θ (2), . . . , θ (M)]T . In (20), we add a regularization
term ‖�‖2

F to fully exploit the complementary information
of all views. λ > 0 is a regularization parameter for con-
trolling the smoothness of �. The larger λ leads to the
smoother weights of views. This subproblem is a quadratic
programming problem, which is efficiently solved by many
optimization solvers. Note that without the regularization
term, a trivial solution exists, that is, θ(i) = 1 corresponding
to the minimum π(i) over all the M views, and θ(i) = 0
otherwise. In this situation, the model finally selects only one
view, but ignores other views.

D. Hash Function Learning

Until now we have learned the view-specific linear map-
pings from original spaces to the common subspace. To obtain
the hash codes, it still remains seeking a mapping from the
common subspace to the Hamming space.

Here for simplicity, we also assume there exists a linear
mapping between these two subspaces, whose corresponding
transformation matrix P ∈ R

d×c can be obtained by solving
the following optimization problem:

min
P

∥
∥PTY − B

∥
∥2

F + δ‖P‖2
F (21)

where δ is the regularization parameter. Clearly, this problem
has the following closed form:

P = (
YYT + δI

)−1
YBT . (22)

Finally, the final hash function H(i) of the ith view (i = 1, 2)
is defined as

H(i)
(

x(i)
)

= sign
(
PTz

) = sign

((
W(i)P

)T
x(i)

)

(23)

where z = W(i)Tx(i) ∈ R
d×1, x(i) ∈ R

di×1 is an arbitrary
sample in the i-th view.

From (23), we see the hash code can be consequently gener-
ated using a two-stage mechanism: given a new sample x(i), it
is first mapped as the latent feature z in the common subspace
using the view-specific mapping W(i), then further transformed
into a c-dimensional binary code via the learned common map-
ping P defined in (22). The training procedure of SPDH is
shown in Algorithm 2.

E. Convergence and Computational Complexity Analysis

We first discuss the convergence of SPDH. We have the
following convergence theorem of SPDH.

Theorem 1: The alternate updating rules in Algorithm 2
monotonically decrease the objective function value of (6)
in each iteration, and Algorithm 2 will converge to a local
minimum of (6).

Proof: The subproblems of W(i), U, and θ(i) are convex,
thus these subproblems are obviously guaranteed to have the
global minimums; although the subproblems of Y and B
are not convex, the optimization for these two subproblems
can decrease the objective function value. Thus the proposed
optimization of each subproblem can decrease the objective

Algorithm 2 Semi-Paired Discrete Hashing (SPDH)

Input: X(i) ∈ R
di×ni (i = 1, 2), code length c, number of

anchor data pairs m, dimensionality of the common subspace
d, parameters α, γ .
Output: projection matrices W(i) ∈ R

di×d (i = 1, 2), P ∈
R

d×c, binary codes B ∈ R
c×n.

1: Initialize W(i), Y, U, B;
2: Generate the graph S using (4);
3: repeat
4: Update W(i) (i = 1, 2) using (8);
5: Update Y by calling Algorithm 1;
6: Update U using (14);
7: Update B bit by bit using (19);
8: Update θ(i) by solving (20);
9: until convergence

10: Obtain P according to (22);
11: Formulate hash function H(i) (i = 1, 2) using (23).

function value in each iteration. In addition, according to
definition of the formulation, the objective function value is
lower-bounded by 0. Summarizing the above parts, we can
conclude that the proposed algorithm theoretically converges
to a local minimum. To this end, Theorem 1 is proved.

Next, we analyze the computational complexity of SPDH.
The computational complexity of training SPDH mainly
includes the following several parts. In graph construction step,
the complexity for generating Z is roughly O(dmns), where
s is the number of neighbor anchors. For implementation, we
do not need to explicitly compute S, instead directly use Z to
speed up the complexity of gradient computation. The com-
putation complexity for updating W(i) is O(d2

i ni + d3
i ). In the

step of updating Y, it is very time-consuming to directly com-
pute the gradient of Y via (11) for large-scale applications. In
fact, Q is the element selection matrix, thus the calculation
of the first term of (11) requires O(dn) via element selec-
tion; the second term of (11) is equivalent to Y − YZ�−1ZT ,
which requires O(dmn + dm2). Besides, updating Y for each
iteration is O(4d2n + d3) [52]. Thus, the complexity of opti-
mizing Y is T1(dmn + dm2 + 4d2n + d3), where T1 is the
number of iterations for updating Y. Updating U needs the
complexity of O(cdn + c2n + c2d + c3). In the step of updat-
ing B, the complexity for updating one bit in B is O(cdn);
accordingly updating B needs O(T2cd2n), where T2 (around
2∼4) is the number of iterations for updating B. Updating
θ(i) requires O(M3). Empirically, the outer iterations will
be repeated within ten times to reach the convergence in
our experiments. Finally, the computation of P requires the
time complexity of O(d2n + cdn). For the query part, the
computational cost for encoding any query x(i) is O(cdi).

From the above complexity analysis, we clearly see that the
training time complexity of SPDH scales linearly with size
of the dataset. Consequently, it is suitable for the large-scale
applications.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
SPDH for both fully-paired and semi-paired cross-view
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TABLE II
STATISTICS OF FOUR BENCHMARK DATASETS

retrieval tasks, and compare it with several state-of-the-art
hashing methods.

A. Datasets

In this experiment, four widely used benchmark datasets,
i.e., Wiki [20], Pascal VOC [53], MIRFlickr [54], and
NUS-WIDE [55] are adopted for evaluation. All datasets are
with views of image and text. Some statistics of them are given
in Table II.

1) Wiki: It has 2866 multimedia documents, where each
image is represented by a 128-D scale-invariant feature trans-
form histogram vector and each text is represented by a 10-D
latent dirichlet allocation topics vector. We use 75% of the
pairs as the training set and database, the remaining 25% as
the query set.

2) Pascal VOC: It consists of 9963 image tag pairs, which
can be categorized into 20 different classes. Each image is
represented by a 512-D Gist vector, and each text is repre-
sented by a 399-D word frequency vector. Here, images with
only one object are selected in the experiment, which results
in 2808 samples as the training set and database, resting 2841
as the query set [56].

3) MIRFlickr: It originally consists of 25 000 images
collected from Flickr website. Each image is associated with
some of 24 provided unique labels. We only keep those textual
tags which have at least 20 textual tags for our experiment,
and subsequently we get 20 015 points for our experiment. For
each instance, the image view is represented with a 150-D
edge histogram and the text view as a 500-D feature vector
derived from PCA on the bag-of-words vector. We take 10%
the dataset as the query set, and the rest as the training set
and database.

4) NUS-WIDE: It consists of 269 648 images from 81
ground-truth concepts with a total number of 5018 unique tags.
Only the top ten most frequent labels and the corresponding
186 577 annotated samples are kept. The images are repre-
sented by 500-D bag-of-visual words and tags is represented
by 1000-D tag occurrence vectors. Following a literature con-
vention [25], [29], we randomly select 1% of the dataset to
form the query set, and the remaining 99% as the training set
and database.

B. Experimental Setting

Two cross-view retrieval tasks are used for evaluation: use
an image query in the visual view to search the relevant texts
from the text view (shorted as TI→T ); use a text query in the
text view to search the relevant images from the visual view
(shorted as TT→I).

We compare SPDH with various state-of-the-art CVH meth-
ods under two different experimental settings. In fully-paired
experimental setting, six fully-paired CVH methods, includ-
ing CVH [21], CMSSH [15], LCMH [16], CCA-ITQ4 [7],
CMFH [24], and QCH [29] are selected for comparisons.
In the semi-paired experimental setting, we select two unsu-
pervised CVH methods, i.e., IMH [23] and PM2H [27], and
one multiview learning method, i.e., cluster-CCA [34], all of
which can deal with the semi-paired data. Source codes of
CMSSH, CCA-ITQ, CMFH, QCH, and IMH are kindly pro-
vided by the authors, while other methods are implemented
by ourselves as their codes are not publicly available. Note
that SPDH is unsupervised, thus for a fair comparison, we
do not incorporate semantic information for all comparison
methods. In SPDH, there are several parameters, i.e., d, m, α,
and γ . We empirically set d = c, and m = 100. α and γ

are ranged from [10−2, 10−1, 100, 101, 102], and finally cho-
sen by cross-validation on the training dataset. For a fair
comparison, parameters of all the other methods are carefully
tuned according to the corresponding literatures, and their best
performances are reported here.

The mean average precision (mAP), precision of top 50
samples, and precision-recall curve are adopted for evaluating
the retrieval performance. mAP is the mean of all the queries’
average precision (AP) in the database. For a query q, AP is
defined as

AP(q) = 1

Lq

R∑

r=1

Pq(r)δq(r) (24)

where Lq is the number of the ground truth neighbors in the
retrieved list, Pq(r) is the precision of the top r retrieved results
and δq(r) = 1 if the rth result is the true neighbor and 0
otherwise. In our experiments, we set R = 50.

C. Performance Evaluation

1) Evaluation on Fully-Paired Data: We first evaluate the
proposed method by performing cross-view retrieval tasks on
fully-paired data. Six fully-paired hashing methods, i.e., CVH,
CMSSH, LCMH, CCA-ITQ, CMFH, and QCH are selected for
comparisons.

The mAP results with different code lengths on four bench-
mark datasets are reported in Table III, where we can clearly
see that SPDH generally obtains the best results in the
most cases. QCH and CMFH achieve comparable perfor-
mances, where CMFH nearly outperforms QCH on Wiki and
NUS-WIDE, and QCH outperforms CMFH on Pascal VOC
and MIRFlickr. CCA-ITQ also has relatively good results,
especially on MIRFlickr. Among the remaining three methods,
CVH generally outperforms CMSSH and LCMH. Generally
speaking, the above results clearly reveal that SPDH can
achieve the promising cross-view retrieval performance on
fully-paired data.

2) Evaluation on Semi-Paired Data: One advantage of
SPDH is to deal with the semi-paired scenario; accordingly
we further evaluate the retrieval performance of SPDH on

4Different from the supervised method the original paper [7], we learn
binary codes of both views in the unsupervised setting.
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TABLE III
COMPARISONS OF MAP WITH DIFFERENT HASH CODE LENGTHS IN THE FULLY-PAIRED SETTING ON FOUR BENCHMARK DATASETS

TABLE IV
COMPARISONS OF MAP WITH DIFFERENT CODE LENGTHS IN THE SEMI-PAIRED SETTING

OF 10% AVAILABLE PAIRWISE INFORMATION ON FOUR BENCHMARK DATASETS

semi-paired data. We compare SPDH with three semi-paired
cross-view methods, i.e., cluster-CCA, IMH, and PM2H. For
cluster-CCA, the clusters are obtained according to the similar-
ities between all the samples and the available anchor pairs.
Then, we apply cluster-CCA to learn the linear projections,
and further get the orthogonal rotation matrix by ITQ to mini-
mize the quantization loss. It is infeasible to train IMH on the
whole NUS-WIDE dataset, thus we select a subset of 20 000
samples for training IMH.

We report the mAP results with fixed 10% pairwise infor-
mation in Table IV. The results show that SPDH generally
outperform other methods by different degrees in different
cases. IMH also obtains good performances, which is fol-
lowed by PM2H. Cluster-CCA is worst among these methods.
Besides, we vary the percentage of pairwise information from
10% to 90%, and report the precision of the top 50 sam-
ples with 32 bit code length in two cross-view retrieval tasks,
as shown in Figs. 3 and 4. From these results, we can see
that all the methods improve the retrieval performance as the
percentage of pairwise information increases. SPDH consis-
tently outperforms other methods in the most cases. IMH
outperforms PM2H on MIRFlickr and NUS-WIDE; PM2H
outperforms IMH in the case of large percentage of pair-
wise information of the other two datasets. In addition, the
precision-recall curves with 90% pairwise information on
32 bit code length are also reported in Figs. 5 and 6, where
we can see that the precision-recall curves of SPDH are above
those of the comparison methods. Furthermore, we show some
retrieval examples of SPDH and the three comparisons on Wiki

dataset in the supplementary. Please refer to the supplemen-
tary materials for details. Generally speaking, the above results
clearly demonstrate that SPDH can handle the semi-paired
cross-view retrieval task very well.

D. Evaluation on the Proposed Coding Scheme

To demonstrate the effectiveness of the proposed dis-
crete coding scheme in SPDH, we report the performances
of two other coding schemes, i.e., sign and ITQ as com-
parisons. For these two comparisons, we first learn W(i)

(i = 1, 2), then further use sign function, or ITQ to obtain
the hash codes. We simply name two comparison methods:
1) SPH-Sign and 2) SPH-ITQ. Fig. 7 shows the mAP com-
parisons with 10% pairwise information on four benchmark
datasets. From Fig. 7, we see that SPH-ITQ obtains better
performances than the SPH-Sign, since SPH-ITQ utilizes the
additional rotation matrix to reduce the quantization errors.
SPDH obviously has the best performances in most cases,
which reveals the superiority of the proposed coding scheme.
Another superiority of SPDH is to jointly learn latent contin-
uous feature and binary codes within one framework, while
two comparison methods ignore the correlation between these
two parts.

E. Evaluation on the Proposed Discrete Optimization

To further demonstrate the effectiveness of the discrete
optimization manner in SPDH, we compare it with a relaxed
manner, which optimizes the hash codes in (5) by directly
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Fig. 3. Comparisons of TI→T with different percentages of pairwise information on (a) Wiki, (b) Pascal VOC, (c) MIRFlickr, and (d) NUS-WIDE.

Fig. 4. Comparisons of TT→I with different percentages of pairwise information on (a) Wiki, (b) Pascal VOC, (c) MIRFlickr, and (d) NUS-WIDE.

Fig. 5. Precision-recall curves of TI→T on (a) Wiki, (b) Pascal VOC, (c) MIRFlickr, and (d) NUS-WIDE.

Fig. 6. Precision-recall curves of TT→I on (a) Wiki, (b) Pascal VOC, (c) MIRFlickr, and (d) NUS-WIDE.

discarding the discrete constraints. It leads to a least square
minimization problem with a close-form solution of B. We
report the mAP comparisons between these two optimization
manners in Fig. 8. From Fig. 8, we can see that our proposed
discrete optimization generally obtains better performances
than the relaxed one. It demonstrates that the proposed dis-
crete optimization can yield better-quality hash codes, while
the conventional relaxed optimization will inevitably incur the
quantization errors without consideration of discrete nature.

F. Efficiency and Convergence Analysis

The algorithms are developed in MATLAB version R2015a.
All the computations reported in this paper are performed on

a Red Hat Enterprise 64-Bit Linux workstation with 12-core
Intel Xeon CPU X5690 3.47 GHz and 96 GB memory. We
conduct the comparisons of computation efficiency. Table V
lists the training time of all the hashing methods with 16 bit
code length. Here, we do not report the search time, since
they are very similar among all the methods. For NUS-WIDE
dataset, the training size is further varied in a wide range from
5000 to 184 711.

From Table V, we see that CMSSH and CCA-ITQ are the
most efficient, followed by CVH. LCMH and CMFH are sim-
ilar in computation efficiency. QCH is the slowest among
the fully-paired hashing methods. In the semi-paired cate-
gory, IMH is the most time consuming on the large-scale
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Fig. 7. Comparisons between the proposed coding scheme and two conventional ones on two different retrieval tasks. (a) TI→T . (b) TT→I .

Fig. 8. Comparisons between the proposed discrete optimization and a relaxed one on two different retrieval tasks. (a) TI→T . (b) TT→I .

TABLE V
COMPARISON OF TRAINING TIME (IN SECONDS) ON FOUR BENCHMARK DATASETS. (“-” DENOTES THE

UNKNOWN COMPUTATION TIME, BECAUSE THE TRAINING CANNOT BE PERFORMED IN THIS CASE)

dataset. Due to the large memory cost, IMH fails to learn
on the NUS-WIDE dataset with more than 50 000 samples on
our workstation. Compared with IMH and PM2H is relatively
fast on the large-scale dataset. SPDH is obviously more effi-
cient than IMH and PM2H. For example, the training time
of SPDH is nearly ten times faster than that of PM2H,
and 200 times faster than that of IMH on NUS-WIDE with
30 000 training samples. The above results demonstrate that
the proposed SPDH is more efficient and scalable than two
other semi-paired hashing methods on the large-scale retrieval
task.

Furthermore, we analyze the convergence of the proposed
SPDH. Fig. 9 shows the convergence curves of SPDH
on four benchmark datasets. As we can see clearly
in Fig. 9, SPDH quickly converges within around ten
iterations.

G. Parameter Analysis
We empirically analyze the sensitivity of three parameters

in the proposed SPDH, i.e., the number of anchor pairs m
and trading-off parameters α and γ . To reveal their effects
on the performance, we report the mAP of the varying
parameters with the fixed 16 code length and 10% pair-
wise information. We evaluate one parameter while fixing
the other parameters. In the experiment, m is ranged from
[10, 50, 100, 200, 500, 1000, 2000], α and γ are varied from
the range of [10−2, 10−1, 100, 101, 102].

Fig. 10 shows mAP results with varying parameters on
two tasks, i.e., TI→T , TT→I . From Fig. 10, we see that with
the increase of α, mAP first maintains or slightly improves,
and then drops with different degrees on different datasets.
Similar phenomenon can also be observed from the change
of γ . The above results indicate that the similarity term
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Fig. 9. Convergence analysis of the proposed SPDH on (a) Wiki, (b) Pascal VOC, (c) MIRFlickr, and (d) NUS-WIDE.

Fig. 10. Parameters analysis of the proposed SPDH on (a)–(c) TI→T and (d)–(f) TT→I . (a) and (d) mAP on varying α. (b) and (e) mAP on varying γ .
(c) and (f) mAP on varying m.

and hash code reconstruction term can help to improve the
performance. However, if α or γ are set to be large, the bal-
ance of each term will be affected, leading to relatively poor
results. Empirically, the superior performance can be obtained
when α, γ ∈ [0.01, 1]. Besides, it can be found that mAP is
generally not sensitive to the change of m, which implies the
robustness of the proposed cross-view graph.

V. CONCLUSION

In this paper, we studied a challenging but less explored
problem in hashing research, i.e., semi-paired cross-view
retrieval. A novel hashing method termed SPDH was proposed
to handle this task. SPDH well aligned both paired and
unpaired samples in the common latent subspace by explor-
ing similarities of the semi-paired data via a new cross-view
graph. A factorization-based hash coding scheme was further
presented to embed the latent features into target hash codes
as semantic discrete representations. The hash codes were dis-
cretely optimized in a bit-by-bit manner with each hash bit
generated with a closed-form solution. SPDH was validated on
four benchmark datasets, and it yielded the promising accuracy
and scalability.

There are several interesting works that deserve further stud-
ies based on our model. First, our model currently considers
the similarity (local) structure of the data, the low-rank (global)
structure can also be explored to further align the semi-paired
data. The more robust 
2,p-norm-based loss terms [57] can be
incorporated to effectively control different levels of noises.
Second, currently this paper focuses on the two-view case;
the multiview (more than two) extension of our model can
be developed to learn hash codes on the more complex semi-
paired data with arbitrary views. Applying this extension to the
general multiview semi-paired retrieval task is an interesting
work. Third, our model only uses a linear projection to gener-
ate hash codes, deep learning can be employed in our model to
discover the nonlinear data structure, obtaining more compact
hash codes.
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